Spatiotemporal Distribution of Mercury in Tree Rings and Soils Within Forests Surrounding Coal-Fired Power Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Sampling Methods
2.2.1. Tree Core Sampling
2.2.2. Soil Sampling
2.3. Measuring Total Hg Concentration
2.3.1. Tree Core Samples
2.3.2. Soil Samples
2.4. Data Analysis
2.4.1. Tree Rings
2.4.2. Soil
3. Results and Discussion
3.1. Hg Concentrations in Tree Rings in the Environs of Coal-Fired Power Plants
3.2. Hg Concentrations in Forest Soils in the Environs of Coal-Fired Power Plants
3.3. Spatial Extent of the Influence of Coal-Fired Power Plants on Hg Concentrations in Forests
3.4. Risk Assessment of Soil Contamination by Hg
3.5. Air Pollution Control Regulation Implications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Area | Point Source | Distance from Point Source (km) | Hg Concentration (ng/g) | |
---|---|---|---|---|
Tree Ring | Soil | |||
CPPA1 | CPP1 | 1 | 10.7 ± 0.6 | 183.3 ± 30.6 |
5 | 10.8 ± 0.5 | 116.7 ± 58.6 | ||
15 | 10.1 ± 0.4 | 73.3 ± 25.2 | ||
25 | 10.4 ± 0.5 | 83.3 ± 15.3 | ||
30 | 8.4 ± 0.5 | 126.7 ± 32.1 | ||
Average | 10.1 ± 0.2 | 116.7 ± 50.1 | ||
CPPA2 | CPP2 | 5 | 10.5 ± 0.5 | 100 ± 20 |
5 | 9.9 ± 0.5 | 70 ± 20 | ||
15 | 11.1 ± 0.5 | 120 ± 52.9 | ||
15 | 10.1 ± 0.5 | 133.3 ± 5.8 | ||
25 | 10.3 ± 0.4 | 93.3 ± 45.1 | ||
25 | 11.7 ± 0.6 | 93.3 ± 57.7 | ||
30 | 6.9 ± 0.1 | 146.7 ± 11.5 | ||
Average | 10.1 ± 0.2 | 108.1 ± 39.3 | ||
CPPA3 | CPP3 | 5 | 11.1 ± 0.6 | 113.3 ± 20.8 |
5 | 11.2 ± 0.5 | 80 ± 10 | ||
25 | 11.6 ± 0.6 | 86.7 ± 40.4 | ||
30 | 10.4 ± 0.5 | 53.3 ± 15.3 | ||
Average | 11.1 ± 0.3 | 83.3 ± 30.6 | ||
CPPA4 | CPP4 | 1 | 10 ± 0.5 | 83.3 ± 20.8 |
15 | 13.3 ± 0.3 | 73.3 ± 35.1 | ||
25 | 8.2 ± 0.6 | 123.3 ± 45.1 | ||
30 | 7.3 ± 0.1 | 90 ± 17.3 | ||
30 | 7 ± 0.2 | 66.7 ± 5.8 | ||
Average | 8.9 ± 0.2 | 87.3 ± 31.5 | ||
INDA | Asan National Industrial complex | 1 | 10.8 ± 0.5 | 193.3 ± 5.8 |
20 | 6.9 ± 0.2 | 73.3 ± 35.1 | ||
Average | 8.7 ± 0.3 | 133.3 ± 69.5 | ||
C1 | - | - | 1.3 ± 0 | 55 ± 5 |
C2 | - | - | 7.6 ± 0.2 | - |
Total average | 9.6 ± 0.1 | 101.3 ± 44.1 |
References
- Amos, H.M.; Jacob, D.J.; Streets, D.G.; Sunderland, E.M. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Global Biogeochem. Cycles 2013, 27, 410–421. [Google Scholar] [CrossRef]
- UNEP. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport; UNEP Chemicals Branch: Geneva, Switzerland, 2013. [Google Scholar]
- Zhang, Y.; Jaeglé, L.; Thompson, L.; Streets, D.G. Six centuries of changing oceanic mercury. Global Biogeochem. Cycles 2014, 28, 1251–1261. [Google Scholar] [CrossRef]
- Outridge, P.M.; Rausch, N.; Percival, J.; Shotyk, W.; McNeely, R. Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 2018, 52, 11466–11477. [Google Scholar] [CrossRef] [PubMed]
- UN Environment. Global Mercury Assessment 2018; UN Environment Programme, Chemicals and Health Branch: Geneva, Switzerland, 2019. [Google Scholar]
- Demers, J.D.; Blum, J.D.; Zak, D.R. Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle. Global Biogeochem. Cycles 2013, 27, 222–238. [Google Scholar] [CrossRef]
- Gruba, P.; Socha, J.; Pietrzykowski, M.; Pasichnyk, D. Tree species affects the concentration of total mercury (Hg) in forest soils: Evidence from a forest soil inventory in Poland. Sci. Total Environ. 2019, 647, 141–148. [Google Scholar] [CrossRef]
- Stein, E.D.; Cohen, Y.; Winer, A.M. Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 1996, 26, 1–43. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 227, 643972. [Google Scholar] [CrossRef]
- Langford, N.; Ferner, R. Toxicity of mercury. J. Hum. Hypertens. 1999, 13, 651–656. [Google Scholar] [CrossRef]
- Gworek, B.; Dmuchowski, W.; Baczewska-Dąbrowska, A.H. Mercury in the terrestrial environment: A review. Environ. Sci. Eur. 2020, 32, 128. [Google Scholar] [CrossRef]
- Watmough, S. Monitoring historical changes in soil and atmospheric trace metal levels by dendrochemical analysis. Environ. Pollut. 1999, 106, 391–403. [Google Scholar] [CrossRef]
- Richer-Laflèche, M.; Bégin, C.; Rodrigue, R. Spatiotemporal reconstruction of lead contamination using tree rings and organic soil layers. Sci. Total Environ. 2008, 407, 233–241. [Google Scholar] [CrossRef]
- Arnold, J.; Gustin, M.S.; Weisberg, P.J. Evidence for nonstomatal uptake of Hg by aspen and translocation of Hg from foliage to tree rings in Austrian pine. Environ. Sci. Technol. 2018, 52, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, T.; Riscassi, A.L.; Demers, J.D.; Camper, T.D.; Lee, T.R.; Druckenbrod, D.L. Mercury accumulation in tree rings: Observed trends in quantity and isotopic composition in Shenandoah National Park, Virginia. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005445. [Google Scholar] [CrossRef]
- Teixeira, D.C.; Lacerda, L.D.; Silva-Filho, E.V. Foliar mercury content from tropical trees and its correlation with physiological parameters in situ. Environ. Pollut. 2018, 242, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Peckham, M.A.; Gustin, M.S.; Weisberg, P.J.; Weiss-Penzias, P. Results of a controlled field experiment to assess the use of tree tissue concentrations as bioindicators of air Hg. Biogeochemistry 2019, 142, 265–279. [Google Scholar] [CrossRef]
- Peckham, M.A.; Gustin, M.S.; Weisberg, P.J. Assessment of the suitability of tree rings as archives of global and regional atmospheric mercury pollution. Environ. Sci. Technol. 2019, 53, 3663–3671. [Google Scholar] [CrossRef]
- Cutter, B.E.; Guyette, R.P. Anatomical, chemical, and ecological factors affecting tree species choice in dendrochemistry studies. J. Environ. Qual. 1993, 22, 611–619. [Google Scholar] [CrossRef]
- ChungNam Institute. West Coast Coastal Environmental Measurement Network Monitoring Study 2017 (Written by Korean Only). Available online: https://www.chungnam.go.kr/cnnet/board.do?mnu_url=/cnbbs/view.do?board_seq=189464&mnu_cd=CNNMENU01183&searchCnd=0&pageNo=12&pageGNo=1&showSplitNo=10&code=85 (accessed on 12 August 2024).
- Bargagli, R.; Nimis, P.L.; Monaci, F. Lichen biomonitoring of trace element deposition in urban, industrial and reference areas of Italy. J. Trace Elem. Med. Biol. 1997, 11, 173–175. [Google Scholar] [CrossRef]
- Monaci, F.; Bargagli, R. Barium and other trace metals as indicators of vehicle emissions. Water Air Soil Pollut. 1997, 100, 89–98. [Google Scholar] [CrossRef]
- Odukoya, O.; Arowolo, T.; Bamgbose, O. Pb, Zn, and Cu levels in tree barks as indicator of atmospheric pollution. Environ. Int. 2000, 26, 11–16. [Google Scholar] [CrossRef]
- Oliva, S.R.; Valdés, B. Influence of washing on metal concentrations in leaf tissue. Commun. Soil Sci. Plant Anal. 2004, 35, 1543–1552. [Google Scholar] [CrossRef]
- Gjorgieva, D.; Kadifkova-Panovska, T.; Bačeva, K.; Stafilov, T. Assessment of heavy metal pollution in Republic of Macedonia using a plant assay. Arch. Environ. Contam. Toxicol. 2011, 60, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Ministry of Environment. Korean Soil Monitoring Network Operational Results Database; Ministry of Environment: Sejong, Republic of Korea, 2022. Available online: https://www.data.go.kr/data/15000997/openapi.do#tab_layer_detail_function (accessed on 15 October 2024).
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Kang, H.; Liu, X.; Guo, J.; Wang, B.; Xu, G.; Wu, G.; Kang, S.; Huang, J. Characterization of mercury concentration from soils to needle and tree rings of Schrenk spruce (Picea schrenkiana) of the middle Tianshan Mountains, northwestern China. Ecol. Indic. 2019, 104, 24–31. [Google Scholar] [CrossRef]
- Navrátil, T.; Nováková, T.; Shanley, J.B.; Rohovec, J.; Matoušková, S.; Vaňková, M.; Norton, S.A. Larch tree rings as a tool for reconstructing 20th century Central European atmospheric mercury trends. Environ. Sci. Technol. 2018, 52, 11060–11068. [Google Scholar] [CrossRef]
- Novakova, T.; Navrátil, T.; Demers, J.D.; Roll, M.; Rohovec, J. Contrasting tree ring Hg records in two conifer species: Multi-site evidence of species-specific radial translocation effects in Scots pine versus European larch. Sci. Total Environ. 2021, 762, 144022. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Wang, X.; Lin, C.-J.; Wu, F.; Luo, K.; Zhang, H.; Lu, Z.; Feng, X. Mercury uptake, accumulation, and translocation in roots of subtropical forest: Implications of global mercury budget. Environ. Sci. Technol. 2022, 56, 14154–14165. [Google Scholar] [CrossRef] [PubMed]
- Lehndorff, E.; Schwark, L. Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler–Part III: Major and trace elements. Atmos. Environ. 2010, 44, 2822–2829. [Google Scholar] [CrossRef]
- Ma, M.; Du, H.; Wang, D. A new perspective is required to understand the role of forest ecosystems in global mercury cycle: A review. Bull. Environ. Contam. Toxicol. 2019, 102, 650–656. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, S.; Li, G.; Liang, S.; Lin, C.-J.; Wang, Y.; Cai, S.; Liu, K.; Hao, J. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978–2014. Environ. Sci. Technol. 2016, 50, 13428–13435. [Google Scholar] [CrossRef] [PubMed]
- Streets, D.G.; Horowitz, H.M.; Lu, Z.; Levin, L.; Thackray, C.P.; Sunderland, E.M. Global and regional trends in mercury emissions and concentrations, 2010–2015. Atmos. Environ. 2019, 201, 417–427. [Google Scholar] [CrossRef]
- Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Xue, W.; Kwon, S.Y.; Grasby, S.E.; Sunderland, E.M.; Pan, X.; Sun, R.; Zhou, T.; Yan, H.; Yin, R. Anthropogenic influences on mercury in Chinese soil and sediment revealed by relationships with total organic carbon. Environ. Pollut. 2019, 255, 113186. [Google Scholar] [CrossRef]
- Dragović, S.; Ćujić, M.; Slavković-Beškoski, L.; Gajić, B.; Bajat, B.; Kilibarda, M.; Onjia, A. Trace element distribution in surface soils from a coal burning power production area: A case study from the largest power plant site in Serbia. Catena 2013, 104, 288–296. [Google Scholar] [CrossRef]
- Pérez, P.A.; Hintelmann, H.; Lobos, G.; Bravo, M.A. Mercury and methylmercury levels in soils associated with coal-fired power plants in central-northern Chile. Chemosphere 2019, 237, 124535. [Google Scholar] [CrossRef]
- Nóvoa-Muñoz, J.; Pontevedra-Pombal, X.; Martínez-Cortizas, A.; Gayoso, E.G.-R. Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in Southwest Europe (Galicia, NW Spain). Sci. Total Environ. 2008, 394, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Navrátil, T.; Šimeček, M.; Shanley, J.B.; Rohovec, J.; Hojdová, M.; Houška, J. The history of mercury pollution near the Spolana chlor-alkali plant (Neratovice, Czech Republic) as recorded by Scots pine tree rings and other bioindicators. Sci. Total Environ. 2017, 586, 1182–1192. [Google Scholar] [CrossRef]
- Jung, R.; Ahn, Y.S. Distribution of mercury concentrations in tree rings and surface soils adjacent to a phosphate fertilizer plant in southern Korea. Bull. Environ. Contam. Toxicol. 2017, 99, 253–257. [Google Scholar] [CrossRef]
- Perone, A.; Cocozza, C.; Cherubini, P.; Bachmann, O.; Guillong, M.; Lasserre, B.; Marchetti, M.; Tognetti, R. Oak tree-rings record spatial-temporal pollution trends from different sources in Terni (Central Italy). Environ. Pollut. 2018, 233, 278–289. [Google Scholar] [CrossRef]
- Muñoz, A.A.; Muñoz, A.A.; Klock-Barria, K.; Sheppard, P.R.; Aguilera-Betti, I.; Toledo-Guerrero, I.; Christie, D.A.; Gorena, T.; Gallardo, L.; Lara, A.; et al. Multidecadal environmental pollution in a mega-industrial area in central Chile registered by tree rings. Sci. Total Environ. 2019, 696, 133915. [Google Scholar] [CrossRef] [PubMed]
- Carballeira, A.; Fernández, J. Bioconcentration of metals in the moss Scleropodium purum in the area surrounding a power plant: A geotopographical predictive model for mercury. Chemosphere 2002, 47, 1041–1048. [Google Scholar] [CrossRef]
- Yang, X.; Wang, L. Spatial analysis and hazard assessment of mercury in soil around the coal-fired power plant: A case study from the city of Baoji, China. Environ. Geol. 2008, 53, 1381–1388. [Google Scholar] [CrossRef]
- Martín, J.A.R.; Nanos, N. Soil as an archive of coal-fired power plant mercury deposition. J. Hazard. Mater. 2016, 308, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Weiss-Penzias, P.S.; Ortiz, C.; Acosta, R.P.; Heim, W.; Ryan, J.P.; Fernandez, D.; Collett, J.L.; Flegal, A.R. Total and monomethyl mercury in fog water from the central California coast. Geophys. Res. Lett. 2012, 39, L03804. [Google Scholar] [CrossRef]
- Mason, R.P.; Sheu, G.R. Role of the ocean in the global mercury cycle. Global Biogeochem. Cycles 2002, 16, 40-1–40-14. [Google Scholar] [CrossRef]
- Holmes, C.D.; Jacob, D.J.; Mason, R.P.; Jaffe, D.A. Sources and deposition of reactive gaseous mercury in the marine atmosphere. Atmos. Environ. 2009, 43, 2278–2285. [Google Scholar] [CrossRef]
- Özkul, C. Heavy metal contamination in soils around the Tunçbilek thermal power plant (Kütahya, Turkey). Environ. Monit. Assess. 2016, 188, 284. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; You, M.; Liu, G.; Dong, Z. Characteristics and potential ecological risks of heavy metal pollution in surface soil around coal-fired power plant. Environ. Earth Sci. 2021, 80, 566. [Google Scholar] [CrossRef]
- Pudasainee, D.; Seo, Y.C.; Sung, J.H.; Jang, H.N.; Gupta, R. Mercury co-beneficial capture in air pollution control devices of coal-fired power plants. Int. J. Coal Geol. 2017, 170, 48–53. [Google Scholar] [CrossRef]
Online a | Offline b | Plant Equipment Number | Facility Capacity (MW) | Fuel Type | ||
---|---|---|---|---|---|---|
Total | Detail | |||||
CPP1 | 1999 | - | 10 | 6040 | (500 MW × 8) + (1020 × 2) | Bituminous coal |
CPP2 | 1995 | - | 11 | 6446.33 | (500 MW × 8) + (1050 × 2) + (346.33 × 1) | Bituminous coal |
CPP3 * | 1983 | - | 6 | 3050 | (500 MW × 5) + (550 MW × 1) | Bituminous coal |
2017 | - | 2 | 2000 | 1000 MW × 2 | Bituminous coal | |
CPP4 * | 1983 | 2017 | 2 | 2000 | 1000 MW × 2 | Anthracite coal |
2021 | - | 1 | 1018 | 1018 MW × 1 | Bituminous coal |
Dependent | Tree Ring Hg Concentration | |
---|---|---|
F | Pr > |F| | |
Pollution source (P) a | 12.058 | 0.000 |
Year (Y) b | 6.203 | 0.000 |
P × Y | 2.193 | 0.026 |
Dependent | Tree Ring Hg Concentration | |
---|---|---|
F | Pr > |F| | |
CPP online (C) a | 0.505 | 0.478 |
C × DCP | 0.953 | 0.433 |
C × Y | 0.230 | 0.795 |
C × DCP × Y | 0.710 | 0.400 |
Distance from CPP (DCP) | 7.651 | 0.000 |
DCP × Y | 0.717 | 0.779 |
Distance from coastal line (DCL) | 7.549 | 0.000 |
DCL × C | 0.686 | 0.561 |
DCL × DCP | 1.692 | 0.167 |
DCL × Y | 1.251 | 0.243 |
DCL × C × DCP | 0.080 | 0.778 |
DCL × C × Y | 0.017 | 0.896 |
DCL × DCP × Y | 0.161 | 0.999 |
Year (Y) b | 3.518 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, E.; Kim, I.; Chae, H.; Lee, S.; Ahn, Y.; Choi, B. Spatiotemporal Distribution of Mercury in Tree Rings and Soils Within Forests Surrounding Coal-Fired Power Plants. Atmosphere 2024, 15, 1287. https://doi.org/10.3390/atmos15111287
Ha E, Kim I, Chae H, Lee S, Ahn Y, Choi B. Spatiotemporal Distribution of Mercury in Tree Rings and Soils Within Forests Surrounding Coal-Fired Power Plants. Atmosphere. 2024; 15(11):1287. https://doi.org/10.3390/atmos15111287
Chicago/Turabian StyleHa, Eugene, Ikhyun Kim, Heemun Chae, Sangsin Lee, Youngsang Ahn, and Byoungkoo Choi. 2024. "Spatiotemporal Distribution of Mercury in Tree Rings and Soils Within Forests Surrounding Coal-Fired Power Plants" Atmosphere 15, no. 11: 1287. https://doi.org/10.3390/atmos15111287
APA StyleHa, E., Kim, I., Chae, H., Lee, S., Ahn, Y., & Choi, B. (2024). Spatiotemporal Distribution of Mercury in Tree Rings and Soils Within Forests Surrounding Coal-Fired Power Plants. Atmosphere, 15(11), 1287. https://doi.org/10.3390/atmos15111287