Quantifying the Impact of Multiple Factors on Air Quality Model Simulation Biases Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.2.1. Simulation Data
2.2.2. Observation Data
2.3. Methods
2.3.1. Model Structure
2.3.2. Data Preprocessing
2.3.3. Contribution Analysis Method
2.3.4. Sensitivity Analysis Method
3. Results
3.1. Modeling Biases of WRF-CMAQ
3.2. Model Performance
3.3. Contribution Analysis
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anenberg, S.C.; Henze, D.K.; Tinney, V.; Kinney, P.L.; Raich, W.; Fann, N.; Malley, C.S.; Roman, H.; Lamsal, L.; Duncan, B.; et al. Estimates of the Global Burden of Ambient PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency Room Visits. Environ. Health Perspect. 2018, 126, 107004. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Maji, K.J.; Ye, W.-F.; Arora, M.; Nagendra, S.M.S. Ozone Pollution in Chinese Cities: Assessment of Seasonal Variation, Health Effects and Economic Burden. Environ. Pollut. 2019, 247, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Pak, U.; Ma, J.; Ryu, U.; Ryom, K.; Juhyok, U.; Pak, K.; Pak, C. Deep Learning-Based PM2.5 Prediction Considering the Spatiotemporal Correlations: A Case Study of Beijing, China. Sci. Total Environ. 2020, 699, 133561. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, P.; Pitari, G.; Mancini, E.; Gentile, S.; Pichelli, E.; Visconti, G. Evolution of Surface Ozone in Central Italy Based on Observations and Statistical Model. J. Geophys. Res. 2007, 112, 2006JD007900. [Google Scholar] [CrossRef]
- Hu, X.; Waller, L.A.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G.; Estes, S.M.; Quattrochi, D.A.; Sarnat, J.A.; Liu, Y. Estimating Ground-Level PM2.5 Concentrations in the Southeastern U.S. Using Geographically Weighted Regression. Environ. Res. 2013, 121, 1–10. [Google Scholar] [CrossRef]
- Jeong, J.I.; Park, R.J.; Yeh, S.-W.; Roh, J.-W. Statistical Predictability of Wintertime PM2.5 Concentrations over East Asia Using Simple Linear Regression. Sci. Total Environ. 2021, 776, 146059. [Google Scholar] [CrossRef]
- David, L.M.; Ravishankara, A.R.; Brewer, J.F.; Sauvage, B.; Thouret, V.; Venkataramani, S.; Sinha, V. Tropospheric Ozone over the Indian Subcontinent from 2000 to 2015: Data Set and Simulation Using GEOS-Chem Chemical Transport Model. Atmos. Environ. 2019, 219, 117039. [Google Scholar] [CrossRef]
- Cheng, F.-Y.; Feng, C.-Y.; Yang, Z.-M.; Hsu, C.-H.; Chan, K.-W.; Lee, C.-Y.; Chang, S.-C. Evaluation of Real-Time PM2.5 Forecasts with the WRF-CMAQ Modeling System and Weather-Pattern-Dependent Bias-Adjusted PM2.5 Forecasts in Taiwan. Atmos. Environ. 2021, 244, 117909. [Google Scholar] [CrossRef]
- Christian, K.E.; Brune, W.H.; Mao, J. Global Sensitivity Analysis of the GEOS-Chem Chemical Transport Model: Ozone and Hydrogen Oxides during ARCTAS (2008). Atmos. Chem. Phys. 2017, 17, 3769–3784. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Zeng, Z.; Wang, Y.; Zhai, S.; Wang, Z.; Luo, M.; Zhang, L.; Liao, T.; Zhao, H.; et al. Construction of a Virtual PM2.5 Observation Network in China Based on High-Density Surface Meteorological Observations Using the Extreme Gradient Boosting Model. Environ. Int. 2020, 141, 105801. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Xu, J.; Tu, R.; Saleh, M.; Hatzopoulou, M. Potential of Machine Learning for Prediction of Traffic Related Air Pollution. Transp. Res. Part D Transp. Environ. 2020, 88, 102599. [Google Scholar] [CrossRef]
- Liu, X.; Lu, D.; Zhang, A.; Liu, Q.; Jiang, G. Data-Driven Machine Learning in Environmental Pollution: Gains and Problems. Environ. Sci. Technol. 2022, 56, 2124–2133. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Zheng, Y.; Geng, G.; Xiao, Q.; Meng, X.; Wang, M.; Li, X.; Wu, N.; Zhang, Q.; Zhu, T. Estimating Spatiotemporal Variation in Ambient Ozone Exposure during 2013–2017 Using a Data-Fusion Model. Environ. Sci. Technol. 2020, 54, 14877–14888. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Geng, G.; Cheng, J.; Liang, F.; Li, R.; Meng, X.; Xue, T.; Huang, X.; Kan, H.; Zhang, Q.; et al. Evaluation of Gap-Filling Approaches in Satellite-Based Daily PM2.5 Prediction Models. Atmos. Environ. 2021, 244, 117921. [Google Scholar] [CrossRef]
- Zaytar, M.A.; El Amrani, C. Machine Learning Methods for Air Quality Monitoring. In Proceedings of the 3rd International Conference on Networking, Information Systems & Security, Marrakech, Morocco, 31 March–2 April 2020; ACM: New York, NY, USA; pp. 1–5. [Google Scholar]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Xu, R.; Ye, T.; Yue, X.; Yang, Z.; Yu, W.; Zhang, Y.; Bell, M.L.; Morawska, L.; Yu, P.; Zhang, Y.; et al. Global Population Exposure to Landscape Fire Air Pollution from 2000 to 2019. Nature 2023, 621, 521–529. [Google Scholar] [CrossRef]
- Keller, C.A.; Evans, M.J.; Knowland, K.E.; Hasenkopf, C.A.; Modekurty, S.; Lucchesi, R.A.; Oda, T.; Franca, B.B.; Mandarino, F.C.; Díaz Suárez, M.V.; et al. Global Impact of COVID-19 Restrictions on the Surface Concentrations of Nitrogen Dioxide and Ozone. Atmos. Chem. Phys. 2021, 21, 3555–3592. [Google Scholar] [CrossRef]
- Yin, H.; Lu, X.; Sun, Y.; Li, K.; Gao, M.; Zheng, B.; Liu, C. Unprecedented Decline in Summertime Surface Ozone over Eastern China in 2020 Comparably Attributable to Anthropogenic Emission Reductions and Meteorology. Environ. Res. Lett. 2021, 16, 124069. [Google Scholar] [CrossRef]
- Liu, J.; Xing, J. Identifying Contributors to PM2.5 Simulation Biases of Chemical Transport Model Using Fully Connected Neural Networks. J. Adv. Model. Earth Syst. 2023, 15, e2021MS002898. [Google Scholar] [CrossRef]
- Ye, X.; Wang, X.; Zhang, L. Diagnosing the Model Bias in Simulating Daily Surface Ozone Variability Using a Machine Learning Method: The Effects of Dry Deposition and Cloud Optical Depth. Environ. Sci. Technol. 2022, 56, 16665–16675. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA; pp. 785–794. [Google Scholar]
- Hu, L.; Wang, C.; Ye, Z.; Wang, S. Estimating Gaseous Pollutants from Bus Emissions: A Hybrid Model Based on GRU and XGBoost. Sci. Total Environ. 2021, 783, 146870. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Cheng, J.C.P.; Xu, Z.; Chen, K.; Lin, C.; Jiang, F. Identification of the Most Influential Areas for Air Pollution Control Using XGBoost and Grid Importance Rank. J. Clean. Prod. 2020, 274, 122835. [Google Scholar] [CrossRef]
- Pan, B. Application of XGBoost Algorithm in Hourly PM2.5 Concentration Prediction. IOP Conf. Ser. Earth Environ. Sci. 2018, 113, 012127. [Google Scholar] [CrossRef]
- Kim, M.; Brunner, D.; Kuhlmann, G. Importance of Satellite Observations for High-Resolution Mapping of near-Surface NO2 by Machine Learning. Remote Sens. Environ. 2021, 264, 112573. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Nair, B.; Vavilala, M.S.; Horibe, M.; Eisses, M.J.; Adams, T.; Liston, D.E.; Low, D.K.-W.; Newman, S.-F.; Kim, J.; et al. Explainable Machine-Learning Predictions for the Prevention of Hypoxaemia during Surgery. Nat. Biomed. Eng. 2018, 2, 749–760. [Google Scholar] [CrossRef]
- Zhang, S.; Xing, J.; Sarwar, G.; Ge, Y.; He, H.; Duan, F.; Zhao, Y.; He, K.; Zhu, L.; Chu, B. Parameterization of Heterogeneous Reaction of SO2 to Sulfate on Dust with Coexistence of NH3 and NO2 under Different Humidity Conditions. Atmos. Environ. 2019, 208, 133–140. [Google Scholar] [CrossRef]
- Tao, H.; Xing, J.; Zhou, H.; Pleim, J.; Ran, L.; Chang, X.; Wang, S.; Chen, F.; Zheng, H.; Li, J. Impacts of Improved Modeling Resolution on the Simulation of Meteorology, Air Quality, and Human Exposure to PM2.5, O3 in Beijing, China. J. Clean. Prod. 2020, 243, 118574. [Google Scholar] [CrossRef]
- Sistla, G.; Zhou, N.; Hao, W.; Ku, J.-Y.; Rao, S.T.; Bornstein, R.; Freedman, F.; Thunis, P. Effects of Uncertainties in Meteorological Inputs on Urban Airshed Model Predictions and Ozone Control Strategies. Atmos. Environ. 1996, 30, 2011–2025. [Google Scholar] [CrossRef]
- Shan, Y.; Liu, J.; Liu, Z.; Shao, S.; Guan, D. An Emissions-Socioeconomic Inventory of Chinese Cities. Sci. Data 2019, 6, 190027. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Jiang, F.; Feng, S.; Zheng, Y.; Cai, Z.; Lyu, X. Impact of Weather and Emission Changes on NO2 Concentrations in China during 2014–2019. Environ. Pollut. 2021, 269, 116163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, H.; Ho, W.; Cui, L.; Men, Q.; Cao, L.; Zhang, Y.; Wang, J.; Huang, C.; Lee, S.; et al. Critical Roles of Surface-Enhanced Heterogeneous Oxidation of SO2 in Haze Chemistry: Review of Extended Pathways for Complex Air Pollution. Curr. Pollut. Rep. 2024, 10, 70–86. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of Meteorological Conditions on PM2.5 Concentrations across China: A Review of Methodology and Mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Y.; Zhong, S.; Mo, Y.; Zhu, S. Mapping Nighttime PM2.5 Concentrations in Nanjing, China Based on NPP/VIIRS Nighttime Light Data. Atmos. Environ. 2023, 303, 119767. [Google Scholar] [CrossRef]
Type | Variable | Abbr. | Simulation (Unit) | Observation (Unit) | ||
---|---|---|---|---|---|---|
Pollutant | Surface NO2 concentration | NO2 | CMAQ | ppbV | In-site | μg·m−3 |
Surface SO2 concentration | SO2 | ppbV | μg·m−3 | |||
Surface O3 concentration | O3 | ppbV | μg·m−3 | |||
Surface PM2.5 concentration | PM2.5 | ppbV | μg·m−3 | |||
Meteorology | 10 m U-component wind speed | U | WRF | m/s | ERA5 | m/s |
10 m V-component wind speed | V | m/s | m/s | |||
2 m temperature | T | K | K | |||
total precipitation | TP | mm | mm | |||
Relative Humidity/2 m Dewpoint temperature | RH/DT | % | K | |||
Planetary boundary layer height | PBLH/PB | m | m | |||
Surface pressure | SP | Pa | Pa |
Region | Pollutant | Systematic Bias (%) | Input Data Bias (%) |
---|---|---|---|
BTH | NO2 | 5 | 48 |
SO2 | 8 | 35 | |
O3 | 4 | 34 | |
PM2.5 | 8 | 31 | |
YRD | NO2 | 1 | 58 |
SO2 | 28 | 12 | |
O3 | 3 | 47 | |
PM2.5 | 2 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.; Wang, R.; Song, G.; Teng, M.; Zhang, M.; Liu, H.; Li, Z.; Li, S.; Xing, J. Quantifying the Impact of Multiple Factors on Air Quality Model Simulation Biases Using Machine Learning. Atmosphere 2024, 15, 1337. https://doi.org/10.3390/atmos15111337
Fan C, Wang R, Song G, Teng M, Zhang M, Liu H, Li Z, Li S, Xing J. Quantifying the Impact of Multiple Factors on Air Quality Model Simulation Biases Using Machine Learning. Atmosphere. 2024; 15(11):1337. https://doi.org/10.3390/atmos15111337
Chicago/Turabian StyleFan, Chunying, Ruilin Wang, Ge Song, Mengfan Teng, Maolin Zhang, Huangchuan Liu, Zhujun Li, Siwei Li, and Jia Xing. 2024. "Quantifying the Impact of Multiple Factors on Air Quality Model Simulation Biases Using Machine Learning" Atmosphere 15, no. 11: 1337. https://doi.org/10.3390/atmos15111337
APA StyleFan, C., Wang, R., Song, G., Teng, M., Zhang, M., Liu, H., Li, Z., Li, S., & Xing, J. (2024). Quantifying the Impact of Multiple Factors on Air Quality Model Simulation Biases Using Machine Learning. Atmosphere, 15(11), 1337. https://doi.org/10.3390/atmos15111337