Effect of Seedling Rates on Crop Yield and Methane Emissions from Rice Paddies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Sampling and Measurement Methods
2.3. Statistical Analysis
3. Results
3.1. CH4 Emissions
3.2. Rice Yields and Yield-Scaled CH4 Emissions
4. Discussion
4.1. Effect of Seedling Rates on CH4 Emissions
4.2. Effect of Seedling Rates on Yield
4.3. Optimal Seedling Rates for Both Yield and CH4 Emissions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hori, K.; Sun, J. Rice grain size and quality. Rice 2022, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Carlson, K.; Gerber, J.; Mueller, N.; Herrero, M.; MacDonald, G.; Brauman, K.; Havlik, P.; O’Connell, C.; Johnson, J.; Saatchi, S.; et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Bhullar, G.S.; Iravani, M.; Edwards, P.J.; Venterink, H.O. Methane transport and emissions from soil as affected by water table and vascular plants. BMC Ecol. 2013, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Kimura, M. Factors affecting variation in CH4 emission from paddy soils grown with different rice cultivars: A pot experiment. J. Geophys. Res. 1998, 103, 18947–18952. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; Yu, F.; Zhang, Y.; Liu, K.; Zhuo, X.; Qiu, Y.; Zhang, H.; Gu, J.; Wang, W.; et al. Reducing methane emission by promoting its oxidation in rhizosphere through nitrogen-induced root growth in paddy fields. Plant Soil 2022, 474, 541–560. [Google Scholar] [CrossRef]
- Li, F.; Qian, H.; Yang, T.; Wang, M.; Fang, F.; Jiang, Y.; Wu, D.; Zhang, N.; Feng, J. Higher food yields and lower greenhouse gas emissions from aquaculture ponds with high-stalk rice planted. Environ. Sci. Technol. 2023, 57, 12270–12279. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Minoda, T.; Kimura, M. Contribution of photosynthesized carbon to the methane emitted from paddy fields. Geophys. Res. Lett. 1994, 21, 2007–2010. [Google Scholar] [CrossRef]
- Huang, Y.; Sass, R.; Fisher, F. Methane emission from Texas rice paddy soils. 2. Seasonal contribution of rice biomass production to CH4 emission. Glob. Chang. Biol. 1997, 3, 491–500. [Google Scholar] [CrossRef]
- Tokida, T.; Adachi, M.; Cheng, W.; Nakajima, Y.; Fumoto, T.; Matsushima, M.; Nakamura, H.; Okada, M.; Sameshima, R.; Hasegawa, T. Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature. Glob. Chang. Biol. 2011, 17, 3327–3337. [Google Scholar] [CrossRef]
- Watanabe, A.; Takeda, T.; Kimura, M. Evaluation of carbon origins of CH4 emitted from rice paddies. J. Geophys. Res. 1999, 104, 13623–23630. [Google Scholar] [CrossRef]
- Cho, R.; Schroth, M.H.; Zeyer, J. Circadian methane oxidation in the root zone of rice plants. Biogeochemistry 2012, 111, 317–330. [Google Scholar] [CrossRef]
- Butterbachbahl, K.; Papen, H.; Rennenberg, H. Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ. 1997, 20, 1175–1183. [Google Scholar] [CrossRef]
- Jia, Z.J.; Cai, Z.C.; Xu, H.; Li, X.P. Effect of rice plants on CH4 production, transport, oxidation and emission in rice paddy soil. Plant Soil 2001, 230, 211–221. [Google Scholar] [CrossRef]
- Yu, K.W.; Wang, Z.P.; Chen, G.X. Nitrous oxide and methane transport through rice plants. Biol. Fert. Soils 1997, 24, 341–343. [Google Scholar] [CrossRef]
- Singh, S.; Singh, J.S.; Kashyap, A.K. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biol. Biochem. 1999, 31, 1219–1228. [Google Scholar] [CrossRef]
- Wang, W.; Chen, C.; Wu, X.; Xie, K.; Yin, C.; Hou, H.; Xie, X. Effects of reduced chemical fertilizer combined with straw retention on greenhouse gas budget and crop production in double rice fields. Biol. Fertil. Soils 2019, 55, 89–96. [Google Scholar] [CrossRef]
- Wu, X.; Wang, W.; Xie, K.; Yin, C.; Hou, H.; Xie, X. Combined effects of straw and water management on CH4 emissions from rice fields. J. Environ. Manag. 2019, 231, 1257–1262. [Google Scholar] [CrossRef]
- Das, K.; Baruah, K.K. Association between contrasting methane emissions of two rice (Oryza sativa L.) cultivars from the irrigated agroecosystem of northeast India and their growth and photosynthetic characteristics. Acta. Physiol. Plant 2008, 30, 569–578. [Google Scholar] [CrossRef]
- Ma, K.; Qiu, Q.; Lu, Y. Microbial mechanism for rice variety control on methane emission from rice field soil. Glob. Chang. Biol. 2009, 16, 3085–3095. [Google Scholar] [CrossRef]
- Li, S.; Chen, L.; Han, X.; Yang, K.; Liu, K.; Wang, J.; Chen, Y.; Liu, L. Rice Cultivar Renewal Reduces Methane Emissions by Improving Root Traits and Optimizing Photosynthetic Carbon Allocation. Agriculture 2022, 12, 2134. [Google Scholar] [CrossRef]
- Feng, Z.Y.; Qin, T.; Du, X.Z.; Sheng, F.; Li, C.F. Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China. Agric. Water Manag. 2021, 250, 106830. [Google Scholar] [CrossRef]
- Laanbroek, H.J. Methane emission from natural wetlands: Interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann. Bot. 2010, 105, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wang, X.; Wang, M.; Li, F.; Barthel, M.; Six, J.; Feng, J.; Fang, F. Impact of rice-crab and rice-fish co-cultures on the methane emission and its transport in aquaculture ponds. Agric. Ecosyst. Environ. 2025, 378, 109281. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, Z.; Zhao, X.; Guo, H.; Yan, L.; Zhou, M.; Zhang, L.; Ye, Y.; Liu, W.; Xu, Y.; et al. Comparison of Carbon Footprint Differences in Nitrogen Reduction and Density Increase in Double Cropping Rice under Two Evaluation Methods. Agronomy 2024, 14, 803. [Google Scholar] [CrossRef]
- Zhou, W.; Long, W.; Wang, H.; Long, P.; Xu, Y.; Zhong, K.; Xiong, R.; Xie, F.; Chen, F.; Fu, Z. Reducing carbon footprints and increasing net ecosystem economic benefits through dense planting with less nitrogen in double-cropping rice systems. Sci. Total Environ. 2023, 891, 164756. [Google Scholar] [CrossRef]
- Fu, Y.; Zhong, X.; Zeng, J.; Liang, K.; Pan, J.; Xin, Y.; Liu, Y.; Hu, X.; Peng, B.; Chen, R.; et al. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China. J. Integr. Agric. 2021, 20, 565–580. [Google Scholar] [CrossRef]
- Huang, M.; Zou, Y.-B. Reducing environmental risk of nitrogen by popularizing mechanically dense transplanting for rice production in China. J. Integr. Agric. 2020, 19, 2362–2366. [Google Scholar] [CrossRef]
- Gathorne-Hardy, A.; Reddy, D.N.; Venkatanarayana, M.; Harriss-White, B. System of Rice Intensification provides environmental and economic gains but at the expense of social sustainability—A multidisciplinary analysis in India. Agric. Syst. 2016, 143, 159–168. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B.; Uphoff, N. A review of the system of rice intensification in China. Plant Soil 2015, 393, 361–381. [Google Scholar] [CrossRef]
- Berkhout, E.D.; Glover, D.; Kuyvenhoven, A. On-farm impact of the System of Rice Intensification (SRI): Evidence and knowledge gaps. Agric. Syst. 2015, 132, 157–166. [Google Scholar] [CrossRef]
- Sheehy, J.E.; Peng, S.; Dobermann, A.; Mitchell, P.L.; Ferrer, A.B.; Yang, J.C.; Zou, Y.B.; Zhong, X.H.; Huang, J. Fantastic yields in the system of rice intensification: Fact or fallacy? Field Crop Res. 2004, 88, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, S.; Bi, J.; Sun, H.; Wang, C.; Zhang, J. Drought-resistance rice variety with water-saving management reduces greenhouse gas emissions from paddies while maintaining rice yields. Agric. Ecosyst. Environ. 2021, 320, 107592. [Google Scholar] [CrossRef]
Low Seedling Rate | Moderate Seedling Rate | High Seedling Rate | |
---|---|---|---|
Early rice | 4 seedlings per hill | 6 seedlings per hill | 8 seedlings per hill |
Late rice | 2 seedlings per hill | 3 seedlings per hill | 4 seedlings per hill |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Li, H.; Huang, H.; Wang, W. Effect of Seedling Rates on Crop Yield and Methane Emissions from Rice Paddies. Atmosphere 2024, 15, 1342. https://doi.org/10.3390/atmos15111342
Chen Q, Li H, Huang H, Wang W. Effect of Seedling Rates on Crop Yield and Methane Emissions from Rice Paddies. Atmosphere. 2024; 15(11):1342. https://doi.org/10.3390/atmos15111342
Chicago/Turabian StyleChen, Qiping, Hao Li, Hexian Huang, and Wei Wang. 2024. "Effect of Seedling Rates on Crop Yield and Methane Emissions from Rice Paddies" Atmosphere 15, no. 11: 1342. https://doi.org/10.3390/atmos15111342
APA StyleChen, Q., Li, H., Huang, H., & Wang, W. (2024). Effect of Seedling Rates on Crop Yield and Methane Emissions from Rice Paddies. Atmosphere, 15(11), 1342. https://doi.org/10.3390/atmos15111342