Hydrological Response to Climate Change: McGAN for Multi-Site Scenario Weather Series Generation and LSTM for Streamflow Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Hydrological Long Short-Term Memory (LSTM) Design
2.3. Future Scenario Weather Generator (FS-WG) Design
2.4. Multi-Conditional Generative Adversarial Networks (McGANs) Design
3. Results
3.1. LSTM Results for Hydrological Modelling
3.2. Future Scenario Weather Generation
3.2.1. GCM Selection and Projected Future Climate Change
3.2.2. FS-WG for Reginal Weather Generation
3.2.3. McGANs for Multi-Site Weather Generation
3.3. Future Streamflow Scenario Analysis
4. Discussion
4.1. Models Accuracy and Reliability
4.2. Impacts of Climate Changes on Streamflow
4.3. Features and Limitations of the Study
5. Conclusions
- (1)
- The proposed FS-WG-McGANs method effectively generates synthetic multi-site weather data series that preserve both temporal and spatial characteristics of historical observations. The FS-WG model demonstrates high accuracy in reproducing historical patterns, with correlation coefficients and NSE values of 0.9999 for temperature and 0.9989 for precipitation. The McGAN model successfully maintains spatial consistency among stations, as validated by streamflow simulation comparison tests (NSE = 0.92; R = 0.94). This integrated approach enables the robust generation of daily temperature and precipitation data representing various climate change scenarios at multiple sites simultaneously based on ensemble outputs from multiple GCMs.
- (2)
- The LSTM model effectively simulates river discharge at the watershed outlet, achieving a Nash–Sutcliffe efficiency coefficient (NSE) of 0.79 on daily scale streamflow simulation during the validation period. While the model shows varying prediction accuracy across different flow magnitudes (MAPE = 81.10%), the absolute errors remain within acceptable ranges comparable to other daily-scale flow simulation studies. The model maintains reliable performance across both high and low flow conditions, making it suitable for comprehensive climate change impact assessment including both flood and drought risk analysis.
- (3)
- Under future climate scenarios, streamflow in the study area is projected to increase, particularly under high emission scenarios (SSP 3-70 and SSP 5-85). Quantitative analysis shows varying degrees of change across different SSPs: compared to the baseline scenario, SSP 1-26 and SSP 2-45 show mild increases in monthly streamflow, while SSP 3-70 and SSP 5-85 exhibit substantially higher flows, especially during the rainy season (May to September). The frequency of extreme hydrological events is likely to increase under high emission scenarios, with analysis indicating higher risks of both floods and droughts. However, proactive climate policies, such as those represented by the SSP 1-26 scenario, can effectively reduce future flood and drought risks in the Jing River watershed and decrease the probability of extreme streamflow events, serving as an effective approach to address the impacts of climate change.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hogikyan, A.; Resplandy, L.; Liu, M.; Vecchi, G. Hydrological cycle amplification reshapes warming-driven oxygen loss in the Atlantic Ocean. Nat. Clim. Chang. 2024, 14, 82–90. [Google Scholar] [CrossRef]
- Blöschl, G.; Chaffe, P.L.B. Water scarcity is exacerbated in the south. Science 2023, 382, 512–513. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, J.; Klaar, M.; Chen, A.; Gudmundsson, L.; Holden, J. Anthropogenic climate change has influenced global river flow seasonality. Science 2024, 383, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.M.; Davis, K.L.; Ruiz-González, C.; Guimond, J.A.; Michael, H.A.; Paldor, A.; Moosdorf, N.; Paytan, A. The impacts of climate change on coastal groundwater. Nat. Rev. Earth Environ. 2024, 5, 100–119. [Google Scholar] [CrossRef]
- Davamani, V.; John, J.E.; Poornachandhra, C.; Gopalakrishnan, B.; Arulmani, S.; Parameswari, E.; Santhosh, A.; Srinivasulu, A.; Lal, A.; Naidu, R. A Critical Review of Climate Change Impacts on Groundwater Resources: A Focus on the Current Status, Future Possibilities, and Role of Simulation Models. Atmosphere 2024, 15, 122. [Google Scholar] [CrossRef]
- Pokhrel, Y.; Felfelani, F.; Satoh, Y.; Boulange, J.; Burek, P.; Gädeke, A.; Gerten, D.; Gosling, S.N.; Grillakis, M.; Gudmundsson, L.; et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Chang. 2021, 11, 226–233. [Google Scholar] [CrossRef]
- Nourani, V.; Gholinia, A.; Abbaszadeh, P.; Ahmadi, R.; Ke, C.-Q. Unravelling the impact of climate change and anthropogenic activities on streamflow: The benefit of newly developed evapotranspiration data. Hydrol. Sci. J. 2024, 69, 2026–2043. [Google Scholar] [CrossRef]
- Nguyen, B.Q.; Van Binh, D.; Tran, T.-N.-D.; Kantoush, S.A.; Sumi, T. Response of streamflow and sediment variability to cascade dam development and climate change in the Sai Gon Dong Nai River basin. Clim. Dyn. 2024, 62, 7997–8017. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Boulange, J.; Do, H.X.; Gosling, S.N.; Grillakis, M.G.; Koutroulis, A.G.; Leonard, M.; Liu, J.; Müller Schmied, H.; Papadimitriou, L.; et al. Globally observed trends in mean and extreme river flow attributed to climate change. Science 2021, 371, 1159–1162. [Google Scholar] [CrossRef]
- Buechel, M.; Slater, L.; Dadson, S. Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain. Hydrol. Earth Syst. Sci. 2024, 28, 2081–2105. [Google Scholar] [CrossRef]
- Yang, J.; Winrich, A.; Zhang, T.; Qiao, L.; Mattingly, C.; Zou, C. Responses of streamflow to forest expansion in a typical subhumid watershed under future climate conditions. J. Environ. Manag. 2024, 357, 120780. [Google Scholar] [CrossRef] [PubMed]
- Mashaly, A.F.; Fernald, A.G.; Geli, H.M.E.; Salim Bawazir, A.; Steiner, R.L. Dynamic simulation modeling for sustainable water management with climate change in a semi-arid environment. J. Hydrol. 2024, 644, 132126. [Google Scholar] [CrossRef]
- Zheng, H.; Chiew, F.H.S.; Post, D.A.; Robertson, D.E.; Charles, S.P.; Grose, M.R.; Potter, N.J. Projections of future streamflow for Australia informed by CMIP6 and previous generations of global climate models. J. Hydrol. 2024, 636, 131286. [Google Scholar] [CrossRef]
- Li, X.; Sha, J.; Zhao, Y.; Wang, Z.-L. Estimating the Responses of Hydrological and Sedimental Processes to Future Climate Change in Watersheds with Different Landscapes in the Yellow River Basin, China. Int. J. Environ. Res. Public Health 2019, 16, 4054. [Google Scholar] [CrossRef] [PubMed]
- Marras, P.A.; Lima, D.C.A.; Soares, P.M.M.; Cardoso, R.M.; Medas, D.; Dore, E.; De Giudici, G. Future precipitation in a Mediterranean island and streamflow changes for a small basin using EURO-CORDEX regional climate simulations and the SWAT model. J. Hydrol. 2021, 603, 127025. [Google Scholar] [CrossRef]
- Bosompemaa, P.; Brookfield, A.; Zipper, S.; Hill, M.C. Using national hydrologic models to obtain regional climate change impacts on streamflow basins with unrepresented processes. Environ. Model. Softw. 2024, 138, 106234. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Zhang, T.; Feng, P. Research on the future climate change and runoff response in the mountainous area of Yongding watershed. J. Hydrol. 2023, 625, 130108. [Google Scholar] [CrossRef]
- Li, X.; Sha, J.; Wang, Z.-L. Comparison of daily streamflow forecasts using extreme learning machines and the random forest method. Hydrol. Sci. J. 2019, 64, 1857–1866. [Google Scholar] [CrossRef]
- Li, X.; Sha, J.; Li, Y.-m.; Wang, Z.-L. Comparison of hybrid models for daily streamflow prediction in a forested basin. J. Hydroinformatics 2017, 20, 191–205. [Google Scholar] [CrossRef]
- Sha, J.; Li, X.; Yang, J. Estimation of Watershed Hydrochemical Responses to Future Climate Changes Based on CMIP6 Scenarios in the Tianhe River (China). Sustainability 2021, 13, 10102. [Google Scholar] [CrossRef]
- Kapoor, A.; Pathiraja, S.; Marshall, L.; Chandra, R. DeepGR4J: A deep learning hybridization approach for conceptual rainfall-runoff modelling. Environ. Model. Softw. 2023, 169, 105831. [Google Scholar] [CrossRef]
- Sadeghi Tabas, S.; Humaira, N.; Samadi, S.; Hubig, N.C. FlowDyn: A daily streamflow prediction pipeline for dynamical deep neural network applications. Environ. Model. Softw. 2023, 170, 105854. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, Z.; Wang, D.; Wu, J.; Chen, L. An ensemble CNN-LSTM and GRU adaptive weighting model based improved sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input. J. Hydrol. 2023, 625, 129977. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, L.; Zhou, T.; Zheng, J. Assessing the Performance of CMIP6 Models in Simulating Droughts across Global Drylands. Adv. Atmos. Sci. 2024, 41, 193–208. [Google Scholar] [CrossRef]
- Zhang, B.; Song, S.; Wang, H.; Guo, T.; Ding, Y. Evaluation of the performance of CMIP6 models in simulating extreme precipitation and its projected changes in global climate regions. Nat. Hazards 2024. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, X.; Du, W.; Zhang, T.; Bai, X.; Nan, R. Downscaling Daily Reference Evapotranspiration Using a Super-Resolution Convolutional Transposed Network. Water 2024, 16, 335. [Google Scholar] [CrossRef]
- Gibson, P.B.; Stuart, S.; Sood, A.; Stone, D.; Rampal, N.; Lewis, H.; Broadbent, A.; Thatcher, M.; Morgenstern, O. Dynamical downscaling CMIP6 models over New Zealand: Added value of climatology and extremes. Clim. Dyn. 2024, 62, 8255–8281. [Google Scholar] [CrossRef]
- Chae, S.T.; Chung, E.-S. Significant contribution of bias correction methods to uncertainty in future runoff projections under CMIP6 climate change. J. Hydrol. Reg. Stud. 2024, 56, 101973. [Google Scholar] [CrossRef]
- Kim, Y.; Evans, J.P.; Sharma, A. Multivariate bias correction of regional climate model boundary conditions. Clim. Dyn. 2023, 61, 3253–3269. [Google Scholar] [CrossRef]
- Islam, S.A.; Anwar, A.H.M.F.; Bari, M. A simple method of bias correction for GCM derived streamflow at catchment scale. Hydrol. Sci. J. 2023, 68, 1409–1425. [Google Scholar] [CrossRef]
- Vogel, E.; Johnson, F.; Marshall, L.; Bende-Michl, U.; Wilson, L.; Peter, J.R.; Wasko, C.; Srikanthan, S.; Sharples, W.; Dowdy, A.; et al. An evaluation framework for downscaling and bias correction in climate change impact studies. J. Hydrol. 2023, 622, 129693. [Google Scholar] [CrossRef]
- Wamahiu, K.; Kala, J.; Evans, J.P. The influence of bias correction of global climate models prior to dynamical downscaling on projections of changes in climate: A case study over the CORDEX-Australasia domain. Clim. Dyn. 2024, 62, 1219–1231. [Google Scholar] [CrossRef]
- Robertson, D.E.; Chiew, F.H.S.; Potter, N. Adapting rainfall bias-corrections to improve hydrological simulations generated from climate model forcings. J. Hydrol. 2023, 619, 129322. [Google Scholar] [CrossRef]
- Parey, S.; Gailhard, J. Extreme Low Flow Estimation under Climate Change. Atmosphere 2022, 13, 164. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, X.-M.; Guo, J. Evaluation of a multisite weather generator on precipitation simulation in the Yangtze river basin. Hydrol. Res. 2021, 53, 206–220. [Google Scholar] [CrossRef]
- Evin, G.; Favre, A.C.; Hingray, B. Stochastic generation of multi-site daily precipitation focusing on extreme events. Hydrol. Earth Syst. Sci. 2018, 22, 655–672. [Google Scholar] [CrossRef]
- Maraun, D.; Widmann, M. Statistical Downscaling and Bias Correction for Climate Research; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Kochkov, D.; Yuval, J.; Langmore, I.; Norgaard, P.; Smith, J.; Mooers, G.; Klöwer, M.; Lottes, J.; Rasp, S.; Düben, P.; et al. Neural general circulation models for weather and climate. Nature 2024, 632, 1060–1066. [Google Scholar] [CrossRef]
- Eyring, V.; Gentine, P.; Camps-Valls, G.; Lawrence, D.M.; Reichstein, M. AI-empowered next-generation multiscale climate modelling for mitigation and adaptation. Nat. Geosci. 2024, 17, 963–971. [Google Scholar] [CrossRef]
- Leinonen, J.; Nerini, D.; Berne, A. Stochastic Super-Resolution for Downscaling Time-Evolving Atmospheric Fields With a Generative Adversarial Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7211–7223. [Google Scholar] [CrossRef]
- Stengel, K.; Glaws, A.; Hettinger, D.; King, R.N. Adversarial super-resolution of climatological wind and solar data. Proc. Natl. Acad. Sci. USA 2020, 117, 16805–16815. [Google Scholar] [CrossRef] [PubMed]
- Sha, J.; Chen, X.; Chang, Y.; Zhang, M.; Li, X. A spatial weather generator based on conditional deep convolution generative adversarial nets (cDCGAN). Clim. Dyn. 2024, 62, 1275–1290. [Google Scholar] [CrossRef]
- Ji, H.K.; Mirzaei, M.; Lai, S.H.; Dehghani, A.; Dehghani, A. Implementing generative adversarial network (GAN) as a data-driven multi-site stochastic weather generator for flood frequency estimation. Environ. Model. Softw. 2024, 172, 105896. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.-M.; Li, Y.-H.; Liu, L.-L.; Hu, Z.-H.; Xiao, C.; Yang, T.-T. Climate Change Impacts on Runoff in the Fujiang River Basin Based on CMIP6 and SWAT Model. Water 2022, 14, 3614. [Google Scholar] [CrossRef]
- Fanta, S.S.; Sime, C.H. Performance assessment of SWAT and HEC-HMS model for runoff simulation of Toba watershed, Ethiopia. Sustain. Water Resour. Manag. 2021, 8, 8. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Zou, Q.; Ye, L.; Zhu, S.; Zhang, H. Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM. J. Hydrol. 2023, 624, 129969. [Google Scholar] [CrossRef]
- Mohammed, Z.M.; Hassan, W.H. Climate change and the projection of future temperature and precipitation in southern Iraq using a LARS-WG model. Model. Earth Syst. Environ. 2022, 8, 4205–4218. [Google Scholar] [CrossRef]
- Munawar, S.; Rahman, G.; Moazzam, M.F.U.; Miandad, M.; Ullah, K.; Al-Ansari, N.; Linh, N.T.T. Future Climate Projections Using SDSM and LARS-WG Downscaling Methods for CMIP5 GCMs over the Transboundary Jhelum River Basin of the Himalayas Region. Atmosphere 2022, 13, 898. [Google Scholar] [CrossRef]
Name | ID | Longitude | Latitude | Elevation | Periods |
---|---|---|---|---|---|
Huan Xian | 53821 | 36.583 | 107.300 | 1255.6 | 1957-01-01 to 2020-12-31 |
Ping Liang | 53915 | 35.550 | 106.667 | 1346.6 | 1957-01-01 to 2020-12-31 |
Xi Feng Zhen | 53923 | 35.733 | 107.633 | 1421.0 | 1957-01-01 to 2020-12-31 |
Chang Wu | 53929 | 35.200 | 107.800 | 1206.5 | 1957-01-01 to 2020-12-31 |
Name | Source and Description | Resolution | Remark |
---|---|---|---|
Historical Weather Records | Climatic Data Center, National Meteorological Information Center, China Meteorological Administration (http://data.cma.cn, accessed on 1 October 2024) | Daily | 1957–2020 |
Historical Hydrological Data | Annual Hydrological Report P. R. China, Volume 4(8), from National Library of China | Monthly | 2006–2020 |
Historical GCM Data | Coupled Model Intercomparison Project Phase 6 Dataset (https://pcmdi.llnl.gov/CMIP6/, accessed on 1 October 2024) | 1 degree | ~100 km × 100 km |
Future Climate Data | Global Historical and Future Climate Grid Dataset Downscaled Based on GCMs (www.worldclim.org, accessed on 1 October 2024) | 10 min | 18.5 km × 18.5 km |
GCM\Items | Monthly Precipitation | Monthly Average Daily Temperature | Clusters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MSE | RMSE | MAE | R2 | NSE | MSE | RMSE | MAE | R2 | NSE | ||
ACCESS-CM2 | 166.24 | 10.48 | 7.83 | 0.92 | 0.82 | 163.34 | 10.03 | 7.57 | 0.92 | 0.82 | 1 |
BCC-CSM2-MR | 706.26 | 20.33 | 17.13 | 0.94 | 0.41 | 668.18 | 18.78 | 15.71 | 0.94 | 0.45 | 4 |
CMCC-ESM2 | 3974.80 | 46.01 | 37.56 | 0.93 | −2.06 | 3439.84 | 40.03 | 32.54 | 0.93 | −1.50 | 2 |
INM-CM5-0 | 1818.75 | 31.04 | 23.43 | 0.80 | −0.41 | 1781.39 | 28.96 | 21.87 | 0.82 | −0.34 | 3 |
IPSL-CM6A-LR-INCA | 212.56 | 12.09 | 9.31 | 0.92 | 0.72 | 150.14 | 10.18 | 8.07 | 0.93 | 0.77 | 1 |
MIROC6 | 1317.29 | 27.18 | 19.55 | 0.80 | −0.07 | 1364.52 | 26.58 | 19.03 | 0.82 | −0.09 | 0 |
MRI-ESM2-0 | 319.70 | 14.22 | 9.76 | 0.84 | 0.69 | 301.29 | 13.23 | 8.90 | 0.85 | 0.71 | 1 |
UKESM1-0-LL | 101.27 | 8.69 | 6.08 | 0.94 | 0.84 | 101.73 | 8.51 | 5.93 | 0.94 | 0.83 | 1 |
EC-Earth3-Veg | 124.43 | 9.27 | 7.48 | 0.94 | 0.85 | 119.55 | 8.79 | 6.98 | 0.93 | 0.85 | 1 |
GISS-E2-1-G | 994.07 | 23.30 | 20.44 | 0.94 | 0.21 | 1020.39 | 22.56 | 19.62 | 0.94 | 0.20 | 5 |
MPI-ESM1-2-HR | 315.05 | 14.05 | 11.27 | 0.86 | 0.70 | 287.91 | 12.85 | 10.29 | 0.87 | 0.73 | 1 |
Month | Probability Dry | Probability Wet to Dry | Probability Dry to Wet |
---|---|---|---|
Jan. | 0.82 | 0.36 | 0.14 |
Feb. | 0.74 | 0.35 | 0.22 |
Mar. | 0.70 | 0.35 | 0.27 |
Apr. | 0.62 | 0.33 | 0.35 |
May. | 0.56 | 0.31 | 0.44 |
Jun. | 0.51 | 0.27 | 0.50 |
Jul. | 0.38 | 0.19 | 0.54 |
Aug. | 0.38 | 0.17 | 0.49 |
Sep. | 0.40 | 0.19 | 0.46 |
Oct. | 0.53 | 0.28 | 0.39 |
Nov. | 0.72 | 0.35 | 0.21 |
Dec. | 0.86 | 0.42 | 0.13 |
Period | Scenario | Item | Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2030s | SSP1-26 | temperatures | 1.96 | 1.71 | 1.46 | 1.63 | 1.56 | 1.98 | 2.24 | 2.63 | 2.36 | 1.94 | 1.93 | 2.11 |
precipitation | 1.00 | 1.06 | 1.04 | 1.04 | 1.10 | 1.01 | 1.01 | 0.95 | 1.11 | 1.03 | 1.04 | 1.00 | ||
SSP2-45 | temperatures | 1.87 | 1.42 | 1.54 | 1.62 | 1.58 | 1.95 | 2.13 | 2.46 | 2.38 | 1.76 | 1.74 | 1.88 | |
precipitation | 1.00 | 1.04 | 1.05 | 1.05 | 1.06 | 1.02 | 1.04 | 0.98 | 1.05 | 1.04 | 1.02 | 1.02 | ||
SSP3-70 | temperatures | 1.53 | 1.48 | 1.25 | 1.24 | 1.44 | 1.83 | 2.04 | 2.37 | 2.19 | 1.71 | 1.58 | 1.75 | |
precipitation | 1.00 | 1.01 | 1.06 | 1.05 | 1.05 | 1.01 | 1.04 | 0.96 | 1.04 | 1.08 | 1.01 | 1.01 | ||
SSP5-85 | temperatures | 1.82 | 1.85 | 1.47 | 1.59 | 1.77 | 2.08 | 2.32 | 2.67 | 2.42 | 1.90 | 1.95 | 1.98 | |
precipitation | 1.00 | 1.03 | 1.07 | 1.02 | 1.06 | 1.04 | 1.04 | 0.97 | 1.08 | 1.06 | 1.03 | 1.02 | ||
2050s | SSP1-26 | temperatures | 2.27 | 2.33 | 2.12 | 1.91 | 1.96 | 2.55 | 2.91 | 3.30 | 2.99 | 2.20 | 2.20 | 2.43 |
precipitation | 1.05 | 1.08 | 1.08 | 1.09 | 1.09 | 0.99 | 1.04 | 1.02 | 1.15 | 1.14 | 1.08 | 1.02 | ||
SSP2-45 | temperatures | 2.78 | 2.00 | 2.33 | 2.27 | 2.39 | 2.93 | 3.13 | 3.49 | 3.46 | 2.76 | 2.66 | 2.57 | |
precipitation | 1.03 | 1.10 | 1.06 | 1.09 | 1.09 | 1.00 | 1.09 | 0.96 | 1.11 | 1.11 | 1.04 | 1.01 | ||
SSP3-70 | temperatures | 2.69 | 2.31 | 2.14 | 2.13 | 2.40 | 2.99 | 3.17 | 3.59 | 3.43 | 2.75 | 2.59 | 2.63 | |
precipitation | 1.00 | 1.06 | 1.12 | 1.07 | 1.06 | 1.01 | 1.06 | 0.98 | 1.08 | 1.09 | 1.02 | 1.00 | ||
SSP5-85 | temperatures | 3.41 | 2.99 | 2.90 | 2.69 | 2.89 | 3.59 | 3.81 | 4.35 | 4.07 | 3.49 | 3.09 | 3.39 | |
precipitation | 1.00 | 1.10 | 1.12 | 1.13 | 1.06 | 1.03 | 1.05 | 0.96 | 1.18 | 1.10 | 1.07 | 1.00 | ||
2070s | SSP1-26 | temperatures | 2.72 | 2.46 | 2.24 | 2.36 | 2.11 | 2.72 | 3.03 | 3.54 | 3.10 | 2.49 | 2.36 | 2.59 |
precipitation | 1.06 | 1.12 | 1.10 | 1.13 | 1.14 | 1.04 | 1.05 | 0.96 | 1.08 | 1.14 | 1.15 | 1.05 | ||
SSP2-45 | temperatures | 3.31 | 2.81 | 3.03 | 2.97 | 3.02 | 3.71 | 3.94 | 4.56 | 4.29 | 3.54 | 3.26 | 3.32 | |
precipitation | 1.04 | 1.12 | 1.09 | 1.10 | 1.12 | 1.01 | 1.05 | 0.96 | 1.14 | 1.14 | 1.11 | 1.05 | ||
SSP3-70 | temperatures | 3.93 | 3.67 | 3.43 | 3.36 | 3.45 | 4.18 | 4.53 | 5.05 | 4.90 | 3.97 | 3.71 | 3.96 | |
precipitation | 1.01 | 1.08 | 1.11 | 1.14 | 1.11 | 1.05 | 1.05 | 0.96 | 1.11 | 1.22 | 1.06 | 1.01 | ||
SSP5-85 | temperatures | 4.68 | 4.22 | 3.98 | 3.95 | 4.29 | 5.12 | 5.47 | 6.30 | 6.02 | 4.77 | 4.70 | 4.70 | |
precipitation | 1.15 | 1.20 | 1.20 | 1.18 | 1.11 | 1.05 | 1.04 | 0.96 | 1.13 | 1.29 | 1.10 | 1.08 | ||
2090s | SSP1-26 | temperatures | 2.61 | 2.54 | 2.31 | 1.92 | 2.11 | 2.70 | 3.01 | 3.20 | 3.02 | 2.31 | 2.36 | 2.54 |
precipitation | 1.03 | 1.11 | 1.11 | 1.12 | 1.09 | 0.99 | 1.04 | 1.06 | 1.14 | 1.12 | 1.10 | 1.06 | ||
SSP2-45 | temperatures | 3.82 | 3.49 | 3.24 | 3.20 | 3.29 | 4.11 | 4.23 | 4.97 | 4.81 | 3.89 | 3.61 | 3.80 | |
precipitation | 1.05 | 1.16 | 1.17 | 1.12 | 1.18 | 1.03 | 1.05 | 0.96 | 1.14 | 1.25 | 1.15 | 1.06 | ||
SSP3-70 | temperatures | 5.04 | 4.98 | 4.61 | 4.46 | 4.60 | 5.46 | 5.72 | 6.47 | 6.53 | 5.43 | 5.21 | 5.17 | |
precipitation | 1.10 | 1.15 | 1.20 | 1.15 | 1.16 | 1.07 | 1.09 | 0.95 | 1.19 | 1.27 | 1.14 | 1.04 | ||
SSP5-85 | temperatures | 6.59 | 6.61 | 5.80 | 5.70 | 5.91 | 7.05 | 7.16 | 8.22 | 8.27 | 6.82 | 6.53 | 6.40 | |
precipitation | 1.19 | 1.20 | 1.29 | 1.25 | 1.18 | 1.07 | 1.11 | 0.94 | 1.20 | 1.44 | 1.27 | 1.19 |
Hyper-Parameters | Temperature | Precipitation | ||
---|---|---|---|---|
Generator | Discriminator | Generator | Discriminator | |
Noise dimension | 512 | NA | 512 | NA |
Batch size | 5844 | 5844 | 2331 | 2331 |
Learning rate | 0.0001~0.0005 | 0.0001 | 0.0001~0.0005 | 0.0001 |
Initial features | 64 | 32 | 64 | 32 |
Early stop interval | 0.491~0.509 | 0.491~0.509 | 0.483~0.517 | 0.483~0.517 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sha, J.; Chang, Y.; Liu, Y. Hydrological Response to Climate Change: McGAN for Multi-Site Scenario Weather Series Generation and LSTM for Streamflow Modeling. Atmosphere 2024, 15, 1348. https://doi.org/10.3390/atmos15111348
Sha J, Chang Y, Liu Y. Hydrological Response to Climate Change: McGAN for Multi-Site Scenario Weather Series Generation and LSTM for Streamflow Modeling. Atmosphere. 2024; 15(11):1348. https://doi.org/10.3390/atmos15111348
Chicago/Turabian StyleSha, Jian, Yaxin Chang, and Yaxiu Liu. 2024. "Hydrological Response to Climate Change: McGAN for Multi-Site Scenario Weather Series Generation and LSTM for Streamflow Modeling" Atmosphere 15, no. 11: 1348. https://doi.org/10.3390/atmos15111348
APA StyleSha, J., Chang, Y., & Liu, Y. (2024). Hydrological Response to Climate Change: McGAN for Multi-Site Scenario Weather Series Generation and LSTM for Streamflow Modeling. Atmosphere, 15(11), 1348. https://doi.org/10.3390/atmos15111348