The Characteristics of Water-Soluble Inorganic Ions in PM1.0 and Their Impact on Visibility at a Typical Coastal Airport
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Monitoring
2.2. Methodology and Quality Control
2.3. Data Processing
2.3.1. Calculation of Sea Salt (ss) and Non-Sea Salt (nss) Fractions
2.3.2. Assessment of Source Apportionment
2.3.3. Stepwise Regression Model
3. Results and Discussion
3.1. Concentrations of PM1.0 and Water-Soluble Inorganic Chemical Ions
3.2. Seasonal Variation of WSIIs
3.3. Influence of Meteorology on the Concentration of WSIIs
3.4. Source Identification of Water-Soluble Inorganic Chemical Ions
3.5. Relationship Between WSII Concentrations and Visibility
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurniawan, J.S.; Khardi, S. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports. Environ. Impact Assess. Rev. 2011, 31, 240–252. [Google Scholar] [CrossRef]
- Won, W.S.; Oh, R.; Lee, W.; Kim, K.Y.; Ku, S.; Su, P.C.; Yoon, Y.J. Impact of Fine Particulate Matter on Visibility at Incheon International Airport, South Korea. Aerosol Air Qual. Res. 2020, 20, 1048–1061. [Google Scholar] [CrossRef]
- Chuang, M.T.; Chen, Y.C.; Lee, C.T.; Cheng, C.H.; Tsai, Y.J.; Chang, S.Y.; Su, Z.S. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan. Environ. Pollut. 2016, 214, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Fanning, E.; Yu, R.C.; Zhang, Q.; Froines, J.R. Aircraft emissions and local air quality impacts from takeoff activities at a large International Airport. Atmos. Environ. 2011, 45, 6526–6533. [Google Scholar] [CrossRef]
- Acharja, P.; Ali, K.; Trivedi, D.K.; Safai, P.D.; Ghude, S.; Prabhakaran, T.; Rajeevan, M. Characterization of atmospheric trace gases and water soluble inorganic chemical ions of PM1 and PM2.5 at Indira Gandhi International Airport, New Delhi during 2017–18 winter. Sci. Total Environ. 2020, 729, 138800. [Google Scholar] [CrossRef]
- Deshmukh, D.K.; Deb, M.K.; Tsai, Y.I.; Mkoma, S.L. Water Soluble Ions in PM2.5 and PM1 Aerosols in Durg City, Chhattisgarh, India. Aerosol Air Qual. Res. 2011, 11, 696–708. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, S.; Shang, J.; Wilfrid, O.M.F.; Liu, X.; Tian, H.; Boman, J. Impact of Relative Humidity and Water Soluble Constituents of PM2.5 on Visibility Impairment in Beijing, China. Aerosol Air Qual. Res. 2014, 14, 260–268. [Google Scholar] [CrossRef]
- Boyd, D.D. Instrument flying infrequency and weather decision-making for general aviation pilots-implications for flight safety in degraded visibility. Saf. Sci. 2022, 149, 105687. [Google Scholar] [CrossRef]
- Athanasopoulou, E.; Tombrou, M.; Pandis, S.N.; Russell, A.G. The role of sea-salt emissions and heterogeneous chemistry in the air quality of polluted coastal areas. Atmos. Chem. Phys. 2008, 8, 5755–5769. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, S.; Li, J.; Yao, S.; Wang, X. Investigating the aerosol mass and chemical components characteristics and feedback effects on the meteorological factors in the Beijing-Tianjin-Hebei region, China. Environ. Pollut. 2019, 244, 495–502. [Google Scholar] [CrossRef]
- Herndon, S.C.; Jayne, J.T.; Lobo, P.; Onasch, T.B.; Fleming, G.; Hagen, D.E.; Whitefield, P.D.; Miake-Lye, R.C. Commercial aircraft engine emissions characterization of in-use aircraft at Hartsfield-Jackson Atlanta International Airport. Environ. Sci. Technol. 2008, 42, 1877–1883. [Google Scholar] [CrossRef] [PubMed]
- Carslaw, D.C.; Beevers, S.D.; Ropkins, K.; Bell, M.C. Detecting and quantifying aircraft and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international airport. Atmos. Environ. 2006, 40, 5424–5434. [Google Scholar] [CrossRef]
- Yu, K.N.; Cheung, Y.P.; Cheung, T.; Henry, R.C. Identifying the impact of large urban airports on local air quality by nonparametric regression. Atmos. Environ. 2004, 38, 4501–4507. [Google Scholar] [CrossRef]
- Kong, S.; Ji, Y.; Lu, B.; Chen, L.; Han, B.; Li, Z.; Bai, Z. Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmos. Environ. 2011, 45, 5351–5365. [Google Scholar] [CrossRef]
- Keene, W.C.; Pszenny, A.A.P.; Galloway, J.N.; Hawley, M.E. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J. Geophys. Res. 1986, 91, 6647–6658. [Google Scholar] [CrossRef]
- Ali, K.; Acharja, P.; Trivedi, D.K.; Kulkarni, R.; Pithani, P.; Safai, P.D.; Chate, D.M.; Ghude, S.; Jenamani, R.K.; Rajeevan, M. Characterization and source identification of PM2.5 and its chemical and carbonaceous constituents during Winter Fog Experiment 2015-16 at Indira Gandhi International Airport, Delhi. Sci. Total Environ. 2019, 662, 687–696. [Google Scholar] [CrossRef]
- Li, Q.L.; Zhang, H.; Guo, S.S.; Fu, K.; Liao, L.; Xu, Y.; Cheng, S.Q. Groundwater pollution source apportionment using principal component analysis in a multiple land-use area in southwestern China. Environ. Sci. Pollut. Res. 2020, 27, 9000–9011. [Google Scholar] [CrossRef]
- Halim, M.A.; Majumder, R.K.; Nessa, S.A.; Oda, K.; Hiroshiro, Y.; Jinno, K. Arsenic in shallow aquifer in the eastern region of Bangladesh: Insights from principal component analysis of groundwater compositions. Environ. Monit. Assess. 2010, 161, 453–472. [Google Scholar] [CrossRef]
- Anornu, G.; Gibrilla, A.; Adomako, D. Tracking nitrate sources in groundwater and associated health risk for rural communities in the White Volta River basin of Ghana using isotopic approach (δ15N, δ18O-NO3 and 3H). Sci. Total Environ. 2017, 603, 687–698. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, D.Y.; Zhang, Y.; Zhang, X.X.; Cheng, S.P. Multivariate statistical study of organic pollutants in Nanjing reach of Yangtze River. J. Hazard. Mater. 2009, 169, 1093–1098. [Google Scholar] [CrossRef]
- Shi, Y.; Feng, C.; Yang, S. Predictive Modeling of Forest Fires in Yunnan Province: An Integration of ARIMA and Stepwise Regression Analysis. Appl. Sci. 2024, 14, 256. [Google Scholar] [CrossRef]
- Guo, S.; Hu, M.; Zamora, M.L.; Peng, J.; Shang, D.; Zheng, J.; Du, Z.; Wu, Z.; Shao, M.; Zeng, L.; et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, G.; Guo, S.; Zarnora, M.L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Formation of Urban Fine Particulate Matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Shen, Z.; Zhu, C.; Yue, J.; Cao, J.; Liu, S.; Zhu, L.; Zhang, R. Seasonal variations and chemical characteristics of sub-micrometer particles (PM1) in Guangzhou, China. Atmos. Res. 2012, 118, 222–231. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Zhang, X.; Huang, K.; Xu, C.; Tang, A.; Chen, J.; An, Z. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmos. Environ. 2006, 40, 2935–2952. [Google Scholar] [CrossRef]
- Jiang, N.; Dong, Z.; Xu, Y.; Yu, F.; Yin, S.; Zhang, R.; Tang, X. Characterization of PM10 and PM2.5 Source Profiles of Fugitive Dust in Zhengzhou, China. Aerosol Air Qual. Res. 2018, 18, 314–329. [Google Scholar] [CrossRef]
- Shen, Z.; Sun, J.; Cao, J.; Zhang, L.; Zhang, Q.; Lei, Y.; Gao, J.; Huang, R.-J.; Liu, S.; Huang, Y.; et al. Chemical profiles of urban fugitive dust PM2.5 samples in Northern Chinese cities. Sci. Total Environ. 2016, 569–570, 619–626. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, Z.; Cao, J.; Ho, K.; Zhang, R.; Bie, Z.; Chang, H.; Liu, S. Chemical profiles of urban fugitive dust over Xi’an in the south margin of the Loess Plateau, China. Atmos. Pollut. Res. 2014, 5, 421–430. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, L.; Lei, Y.; Gong, X.; Zhang, Q.; Zhang, T.; Xu, H.; Cui, S.; Wang, Q.; et al. Chemical source profiles of urban fugitive dust PM2.5 samples from 21 cities across China. Sci. Total Environ. 2019, 649, 1045–1053. [Google Scholar] [CrossRef]
- Mazaheri, M.; Bostrom, T.E.; Johnson, G.R.; Morawska, L. Composition and Morphology of Particle Emissions from in-use Aircraft during Takeoff and Landing. Environ. Sci. Technol. 2013, 47, 5235–5242. [Google Scholar] [CrossRef]
- Abegglen, M.; Brem, B.T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry. Atmos. Environ. 2016, 134, 181–197. [Google Scholar] [CrossRef]
- Zhao, T.; Yang, L.; Yan, W.; Zhang, J.; Lu, W.; Yang, Y.; Chen, J.; Wang, W. Chemical characteristics of PM1/PM2.5 and influence on visual range at the summit of Mount Tai, North China. Sci. Total Environ. 2017, 575, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Qiao, T.; Zhao, M.; Xiu, G.; Yu, J. Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment. Sci. Total Environ. 2016, 557, 386–394. [Google Scholar] [CrossRef]
- Yao, X.H.; Chan, C.K.; Fang, M.; Cadle, S.; Chan, T.; Mulawa, P.; He, K.B.; Ye, B.M. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ. 2002, 36, 4223–4234. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, X.; Wang, Z.; Zhou, Y.; Cheng, S.; Xu, P.; Gao, X.; Nie, W.; Wang, X.; Wang, W. Airborne fine particulate pollution in Jinan, China: Concentrations, chemical compositions and influence on visibility impairment. Atmos. Environ. 2012, 55, 506–514. [Google Scholar] [CrossRef]
- Cao, J.J.; Wu, F.; Chow, J.C.; Lee, S.C.; Li, Y.; Chen, S.W.; An, Z.S.; Fung, K.K.; Watson, J.G.; Zhu, C.S.; et al. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmos. Chem. Phys. 2005, 5, 3127–3137. [Google Scholar] [CrossRef]
- Shen, Z.; Arimoto, R.; Cao, J.; Zhang, R.; Li, X.; Du, N.; Okuda, T.; Nakao, S.; Tanaka, S. Seasonal Variations and Evidence for the Effectiveness of Pollution Controls on Water-Soluble Inorganic Species in Total Suspended Particulates and Fine Particulate Matter from Xi’an, China. J. Air Waste Manag. Assoc. 2008, 58, 1560–1570. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, L.; Mellouki, A.; Wen, L.; Yang, Y.; Gao, Y.; Jiang, P.; Li, Y.; Wang, W. Chemical characteristics and influence of continental outflow on PM1.0, PM2.5 and PM10 measured at Tuoji island in the Bohai Sea. Sci. Total Environ. 2016, 573, 699–706. [Google Scholar] [CrossRef]
- Zhang, Y.; Lang, J.; Cheng, S.; Li, S.; Zhou, Y.; Chen, D.; Zhang, H.; Wang, H. Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Sci. Total Environ. 2018, 630, 72–82. [Google Scholar] [CrossRef]
- Svedova, B.; Kucbel, M.; Raclavska, H.; Ruzickova, J.; Raclavsky, K.; Sassmanova, V. Water-soluble ions in dust particles depending on meteorological conditions in urban environment. J. Environ. Manag. 2019, 237, 322–331. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Li, H.; Wu, N.; Zhang, Q. Chemical characteristics and source apportionment of ambient PM1.0 and PM2.5 in a polluted city in North China plain. Atmos. Environ. 2020, 242, 117867. [Google Scholar] [CrossRef]
- Li, K.; Chen, L.; White, S.J.; Zheng, X.; Lv, B.; Lin, C.; Bao, Z.; Wu, X.; Gao, X.; Ying, F.; et al. Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou. Environ. Pollut. 2018, 232, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Pateraki, S.; Asimakopoulos, D.N.; Maggos, T.; Assimakopoulos, V.D.; Bougiatioti, A.; Bairachtari, K.; Vasilakos, C.; Mihalopoulos, N. Chemical characterization, sources and potential health risk of PM2.5 and PM1 pollution across the Greater Athens Area. Chemosphere 2020, 241, 125026. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Bie, S.; Zhao, T.; Huang, Q.; Li, J.; Wang, P.; Wang, Y.; Wang, W. Chemical compositions and the impact of sea salt in atmospheric PM1 and PM2.5 in the coastal area. Atmos. Res. 2021, 250, 105323. [Google Scholar] [CrossRef]
- Shi, G.; Xu, J.; Peng, X.; Xiao, Z.; Chen, K.; Tian, Y.; Guan, X.; Feng, Y.; Yu, H.; Nenes, A.; et al. pH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol. Environ. Sci. Technol. 2017, 51, 4289–4296. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Shi, G.L.; Gao, J.; Liu, J.Y.; HuangFu, Y.-Q.; Ma, T.; Wang, H.-T.; Zhang, Y.-C.; Wang, H.; Li, H.; et al. Characteristics and sensitivity analysis of multiple-time-resolved source patterns of PM2.5 with real time data using Multilinear Engine 2. Atmos. Environ. 2016, 139, 113–121. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, S.K.; Vijayan, N.; Mandal, T.K. Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four year study over Delhi, India. Environ. Pollut. 2020, 262, 114337. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.V.; Patil, R.S.; Nambi, K.S.V. Source apportionment of suspended particulate matter at two traffic junctions in Mumbai, India. Atmos. Environ. 2001, 35, 4245–4251. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Critical review of receptor modelling for particulate matter: A case study of India. Atmos. Environ. 2012, 49, 1–12. [Google Scholar] [CrossRef]
- Yin, S.; Lu, Z.; Zhang, Y.; Song, L.; Bi, S.; Luo, X.; Yao, L.; Bi, X.; Bo, H.; Feng, Y. Characteristics of number concentration, size distribution and components of particulate matter emitted from a typical large civil airport. Sci. Total Environ. 2024, 927, 172040. [Google Scholar] [CrossRef]
- Li, D.D.; Xue, L.K.; Wen, L.; Wang, X.F.; Chen, T.S.; Mellouki, A.; Chen, J.M.; Wang, W.X. Characteristics and sources of nitrous acid in an urban atmosphere of northern China: Results from 1-yr continuous observations. Atmos. Environ. 2018, 182, 296–306. [Google Scholar] [CrossRef]
- Ammann, M.; Kalberer, M.; Jost, D.T.; Tobler, L.; Rössler, E.; Piguet, D.; Gäggeler, H.W.; Baltensperger, U. Heterogeneous production of nitrous acid on soot in polluted air masses. Nature 1998, 395, 157–160. [Google Scholar] [CrossRef]
- Zou, J.; Liu, Z.; Hu, B.; Huang, X.; Wen, T.; Ji, D.; Liu, J.; Yang, Y.; Yao, Q.; Wang, Y. Aerosol chemical compositions in the North China Plain and the impact on the visibility in Beijing and Tianjin. Atmos. Res. 2018, 201, 235–246. [Google Scholar] [CrossRef]
- Qiao, T.; Zhao, M.; Xiu, G.; Yu, J. Seasonal variations of water soluble composition (WSOC, Hulis and WSIIs) in PM1 and its implications on haze pollution in urban Shanghai, China. Atmos. Environ. 2015, 123, 306–314. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, L.; Chen, J.; Chen, X.; Niu, Z.; Lei, T.; Li, C.; Zhao, J. Chemical characteristics of PM2.5 during haze episodes in the urban of Fuzhou, China. Particuology 2013, 11, 264–272. [Google Scholar] [CrossRef]
- Tao, J.; Ho, K.F.; Chen, L.; Zhu, L.; Han, J.; Xu, Z. Effect of chemical composition of PM2.5 on visibility in Guangzhou, China, 2007 spring. Particuology 2009, 7, 68–75. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Xiong, Q.; Yang, X.; Qi, M.; Zhao, W.; Wang, X. Characteristics of PM2.5 Chemical Compositions and Their Effect on Atmospheric Visibility in Urban Beijing, China during the Heating Season. Int. J. Environ. Res. Public Health 2018, 15, 1924. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.Y.; Kwon, B.G.; Kim, Y.J.; Kim, H.H.; Chun, K.J. Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmos. Res. 2007, 84, 362–373. [Google Scholar] [CrossRef]
- Lee, H.H.; Bar-Or, R.Z.; Wang, C. Biomass burning aerosols and the low-visibility events in Southeast Asia. Atmos. Chem. Phys. 2017, 17, 965–980. [Google Scholar] [CrossRef]
- Sun, Y.; He, Y.; Kuang, Y.; Xu, W.; Song, S.; Ma, N.; Tao, J.; Cheng, P.; Wu, C.; Su, H.; et al. Chemical Differences Between PM1 and PM2.5 in Highly Polluted Environment and Implications in Air Pollution Studies. Geophys. Res. Lett. 2020, 47, e2019GL086288. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.; Li, L.; Li, J.; Wei, L.; Chi, W.; Hong, L.; Zhao, Q.; Jiang, J. Seasonal concentration distribution of PM1.0 and PM2.5 and a risk assessment of bound trace metals in Harbin, China: Effect of the species distribution of heavy metals and heat supply. Sci. Rep. 2020, 10, 8160. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.; Mao, F.; Guo, J.; Wang, W.; Pan, Z.; Shen, H.; Zhu, B.; Wang, Z. Estimation of spatiotemporal PM1.0 distributions in China by combining PM2.5 observations with satellite aerosol optical depth. Sci. Total Environ. 2019, 658, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
PM1.0 and Ions | Spring | Summer | ||
---|---|---|---|---|
Airport Site | Background Site | Airport Site | Background Site | |
PM1.0 | 39.08 ± 16.27 | 31.79 ± 16.27 | 26.86 ± 23.85 | 29.94 ± 23.85 |
0.19 ± 0.15 | 0.14 ± 0.03 | 0.20 ± 0.05 | 0.19 ± 0.03 | |
2.97 ± 2.30 | 3.07 ± 2.41 | 6.15 ± 3.08 | 5.68 ± 2.65 | |
0.03 ± 0.03 | 0.02 ± 0.01 | 0.04 ± 0.02 | 0.05 ± 0.03 | |
0.18 ± 0.10 | 0.24 ± 0.08 | 0.12 ± 0.07 | 0.13 ± 0.06 | |
2.59 ± 1.42 | 1.49 ± 0.44 | 0.51 ± 0.20 | 1.24 ± 2.32 | |
0.09 ± 0.12 | 0.14 ± 0.09 | 0.08 ± 0.03 | 0.09 ± 0.07 | |
0.28 ± 0.47 | 0.14 ± 0.07 | 0.11 ± 0.08 | 0.11 ± 0.08 | |
0.05 ± 0.05 | 0.02 ± 0.01 | 0.04 ± 0.04 | 0.01 ± 0.01 | |
0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | |
2.56 ± 2.48 | 2.66 ± 2.90 | 1.56 ± 2.52 | 1.66 ± 2.74 | |
0.13 ± 0.06 | 0.16 ± 0.07 | 0.13 ± 0.07 | 0.24 ± 0.27 | |
2.04 ± 1.47 | 1.91 ± 1.38 | 5.87 ± 2.45 | 5.90 ± 2.50 |
Meteorological Conditions | T | RH | WS | P0 |
---|---|---|---|---|
airport Site | 0.157 | 0.598 ** | −0.478 ** | 0.003 |
background Site | 0.308 | 0.640 ** | −0.570 ** | 0.008 |
Ions | Spring | Summer | ||||||
---|---|---|---|---|---|---|---|---|
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 1 | Factor 2 | Factor 3 | Factor 4 | |
Na+ | 0.072 | 0.966 | 0.026 | 0.059 | 0.749 | 0.515 | 0.325 | 0.011 |
0.928 | 0.221 | −0.224 | 0.124 | 0.940 | 0.113 | 0.127 | 0.243 | |
K+ | 0.358 | 0.874 | −0.255 | 0.007 | 0.869 | −0.028 | −0.285 | −0.247 |
Mg2+ | −0.150 | −0.204 | 0.738 | −0.013 | −0.065 | 0.020 | 0.927 | −0.132 |
Ca2+ | −0.365 | 0.116 | 0.782 | −0.159 | 0.497 | −0.028 | 0.842 | 0.139 |
F− | −0.052 | −0.072 | 0.086 | −0.075 | 0.118 | 0.737 | 0.257 | −0.192 |
Cl− | 0.089 | 0.976 | 0.016 | −0.101 | 0.368 | 0.805 | 0.057 | 0.009 |
−0.012 | −0.193 | 0.284 | −0.824 | 0.124 | −0.082 | 0.008 | 0.949 | |
Br− | 0.238 | −0.228 | 0.114 | 0.824 | −0.112 | 0.866 | −0.229 | 0.030 |
0.936 | 0.149 | −0.165 | 0.082 | 0.711 | 0.488 | −0.133 | 0.289 | |
0.651 | −0.292 | 0.164 | 0.019 | −0.293 | 0.478 | 0.557 | 0.300 | |
0.864 | 0.303 | −0.278 | 0.148 | 0.800 | −0.114 | 0.518 | 0.082 |
Parameters | T (℃) | RH (%) | WS (m/s) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spring | −0.260 | −0.662 * | −0.700 * | 0.421 | 0.586 | −0.296 | −0.641 * | −0.487 | −0.393 | 0.326 | −0.722 * | 0.275 |
Summer | −0.472 | −0.909 ** | −0.588 * | 0.297 | −0.082 | −0.427 | −0.917 ** | 0.190 | −0.466 | 0.349 | −0.618 * | 0.431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Xu, Y.; Xu, J.; Ji, Y. The Characteristics of Water-Soluble Inorganic Ions in PM1.0 and Their Impact on Visibility at a Typical Coastal Airport. Atmosphere 2024, 15, 1367. https://doi.org/10.3390/atmos15111367
Zhao J, Xu Y, Xu J, Ji Y. The Characteristics of Water-Soluble Inorganic Ions in PM1.0 and Their Impact on Visibility at a Typical Coastal Airport. Atmosphere. 2024; 15(11):1367. https://doi.org/10.3390/atmos15111367
Chicago/Turabian StyleZhao, Jingbo, Yanhong Xu, Jingcheng Xu, and Yaqin Ji. 2024. "The Characteristics of Water-Soluble Inorganic Ions in PM1.0 and Their Impact on Visibility at a Typical Coastal Airport" Atmosphere 15, no. 11: 1367. https://doi.org/10.3390/atmos15111367
APA StyleZhao, J., Xu, Y., Xu, J., & Ji, Y. (2024). The Characteristics of Water-Soluble Inorganic Ions in PM1.0 and Their Impact on Visibility at a Typical Coastal Airport. Atmosphere, 15(11), 1367. https://doi.org/10.3390/atmos15111367