Impact of Wetting and Drying Cycles on the Hydromechanical Properties of Soil and Implications on Slope Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Pre-Processing of Soil Samples
2.2. Application of Wetting and Drying Cycles
2.3. Measurement of Volumetric Change
2.4. Measurement of Saturated Hydraulic Conductivity (ksat)
2.5. Measurement of Soil Water Characteristic Curve (SWCC)
2.6. Measurement of Effective Shear Strength of Soil
2.7. Evaluating the Performance of Flood Embankment
3. Results
3.1. Volumetric Behaviour of Soils Under Wetting and Drying Cycles
3.2. Hydraulic Characteristics of Soils Under Wetting and Drying Cycles
3.3. Shear Strength of Soil Under Wetting and Drying Cycles
3.4. Performance of Model Flood Embankment Under Wetting and Drying Cycles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Environment Agency. Climate Change Adaptation and Disaster Risk Reduction in Europe; European Environment Agency, Publications Office of the European Union: Luxembourg, 2017.
- Clarke, D.; Smethurst, J.A. Effects of climate change on wetting and drying cycles in engineered clay slopes in England. Q. J. Eng. Geol. Hydrogeol. 2010, 43, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.S.; Wang, D.Y.; Shi, B.; Li, J. Effect of wetting–drying cycles on profile mechanical behaviour of soils with different initial conditions. Catena 2016, 139, 105–116. [Google Scholar]
- Turrakheil, K.S.; Shah, S.S.A.; Naveed, M. Evolution of Soil Pore Structure and Shear Strength Deterioration of Compacted Soil under Controlled Wetting and Drying Cycles. Atmosphere 2024, 15, 843. [Google Scholar] [CrossRef]
- Xu, B.; Yin, Z.; Liu, S.-L. Experimental study of the factors and laws affecting the strength of expansive soil. Rock Soil Mech. 2011, 32, 44–50. [Google Scholar]
- Li, X.Y.; Hu, H.B.; Guo, W. Dry-wet circulation intensity attenuation law of subgrade under the condition of clay. Highw. Eng. 2014, 164, 150–152. [Google Scholar]
- Xu, J.; Zhou, L.; Hu, K.; Li, Y.; Zhou, X.; Wang, S. Influence of wet-dry cycles on uniaxial compression behaviour of fissured loess disturbed by vibratory loads. KSCE J. Civ. Eng. 2022, 26, 2139–2152. [Google Scholar] [CrossRef]
- Niu, Z.L.; Xu, J.; Li, Y.F.; Wang, Z.F.; Wang, B. Strength deterioration mechanism of bentonite modified loess after wetting–drying cycles. Sci. Rep. 2022, 12, 3130. [Google Scholar] [CrossRef]
- Khan, M.A.; Hossain, M.S.; Khan, M.S.; Samir, S.; Aramoon, A. Impact of wet-dry cycles on the shear strength of high plastic clay based on direct shear testing. In Proceedings of the Geotechnical Frontiers 2017, Orlando, FL, USA, 12–15 March 2017; pp. 615–622. [Google Scholar]
- Zhang, J.R.; Xu, Q.; Sun, D.A. Simulation of soil-water characteristic curves during drying and wetting cycles. Rock Soil Mech. 2014, 35, 689–695. [Google Scholar]
- Dyer, M. Performance of flood embankments in England and Wales. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, 2004; Volume 157, pp. 177–186. [Google Scholar]
- Gowthaman, S.; Nakashima, K.; Kawasaki, S. Effect of wetting and drying cycles on the durability of biocemented soil of expressway slope. Int. J. Environ. Sci. Technol. 2022, 19, 2309–2322. [Google Scholar] [CrossRef]
- Rasul, J.M.; Ghataora, G.S.; Burrow, M.P. The effect of wetting and drying on the performance of stabilised subgrade soils. Transp. Geotech. 2018, 14, 1–7. [Google Scholar] [CrossRef]
- Stirling, R.A.; Toll, D.G.; Glendinning, S.; Helm, P.R.; Yildiz, A.; Hughes, P.N.; Asquith, J.D. Weather-driven deterioration processes affecting the performance of embankment slopes. Géotechnique 2021, 71, 957–969. [Google Scholar] [CrossRef]
- Tu, Y.; Zhang, R.; Zhong, Z.; Chai, H. The strength behavior and desiccation crack development of silty clay subjected to wetting-drying cycles. Front. Earth Sci. 2022, 10, 852820. [Google Scholar] [CrossRef]
- Zhao, G.T.; Han, Z.; Zou, W.L.; Wang, X.Q. Evolution of mechanical behaviours of an expansive soil during drying-wetting, freeze-thaw, and drying-wetting-freeze–thaw cycles. Bull. Eng. Geol. Environ. 2021, 80, 8109–8121. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, H.; Peng, J.; Zhang, Y.; Zhang, A. Enhanced understanding of subgrade soil hydraulic characteristics: Effects of wetting–drying cycles and stress states on subgrade water migration. J. Hydrol. 2024, 635, 131165. [Google Scholar] [CrossRef]
- Ng, C.; Daniel, P. Pore structure effects on the water retention behaviour of a compacted silty sand soil subjected to drying-wetting cycles. Eng. Geol. 2023, 313, 106963. [Google Scholar] [CrossRef]
- Jing, J.; Hou, J.; Sun, W.; Chen, G.; Ma, Y.; Ji, G. Study on influencing factors of unsaturated loess slope stability under dry-wet cycle conditions. J. Hydrol. 2022, 612, 128187. [Google Scholar] [CrossRef]
- Wen, T.; Chen, X.; Shao, L. Effect of multiple wetting and drying cycles on the macropore structure of granite residual soil. J. Hydrol. 2022, 614, 128583. [Google Scholar] [CrossRef]
- Chen, X.; Quan, Q.; Zhang, K.; Wei, J. Spatiotemporal characteristics and attribution of dry/wet conditions in the Weihe River Basin within a typical monsoon transition zone of East Asia over the recent 547 years. Environ. Model. Softw. 2021, 143, 105116. [Google Scholar] [CrossRef]
- Ventini, R.; Dodaro, E.; Pirone, M.; Giretti, D.; Gragnano, C.G.; Fioravante, V.; Gottardi, G.; Mancuso, C. Integrated Physical and Numerical Modelling to Study the Hydro-Mechanical Response of a River Embankment. In National Conference of the Researchers of Geotechnical Engineering; Springer Nature: Cham, Switzerland, 2023; pp. 569–577. [Google Scholar]
- Zhao, Y. The Influence of Rainfall and Evaporization Wetting-Drying Cycles on the Slope Stability. In Advances in Meteorology; Wiley: Hoboken, NJ, USA, 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Hassan, M.A.; Ismail, M.A.M.; Shaalan, H.H. Numerical modelling for the effect of soil type on stability of embankment. Civ. Eng. J. 2022, 7, 41–57. [Google Scholar] [CrossRef]
- BS 1377-1: 2016; Methods of Test for Soils for Civil Engineering Purposes–Part 1: General Requirements and Sample Preparation. The British Standards Institution: London, UK, 2016.
- BS 1377-2: 2022; Methods of Test for Soils for Civil Engineering Purposes—Part 2: Classification Tests and Determination of Geotechnical Properties. The British Standards Institution: London, UK, 2016.
- BS 1377-4: 1990; Methods of Test for Soils for Civil Engineering Purposes–Compaction Related Tests. The British Standards Institution: London, UK, 1990.
- BS 1377-6: 1990; Methods of Test for Soils for Civil Engineering Purposes. Consolidation and Permeability Tests in Hydraulic Cells and with Pore Pressure Measurement. The British Standards Institution: London, UK, 1990.
- ASTM Standard D5298-03; Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. ASTM International: West Conshohocken, PA, USA, 2017.
- Chandler, R.J.; Crilly, M.S.; Montgomery-Smith, G. A low-cost method of assessing clay desiccation for low-rise-buildings. Proc. Inst. Civ. Eng. 1992, 92, 82–89. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Shah, S.S.A.; Asif, A.R.; Ahmed, W.; Islam, I.; Waseem, M.; Janjuhah, H.T.; Kontakiotis, G. Determination of Dynamic Properties of Fine-Grained Soils at High Cyclic Strains. Geosciences 2023, 13, 204. [Google Scholar] [CrossRef]
- Tang, C.-S.; Cheng, Q.; Gong, X.; Shi, B.; Inyang, H.I. Investigation on microstructure evolution of clayey soils: A review focusing on wetting/drying process. J. Rock Mech. Geotech. Eng. 2023, 15, 269–284. [Google Scholar] [CrossRef]
- Ye, W.M.; Wan, M.; Chen, B.; Cui, Y.; Wang, J. Micro-structural behaviors of densely compacted GMZ01 bentonite under drying/wetting cycles. Chin. J. Geotech. Eng. 2011, 33, 1173–1177. [Google Scholar]
- Cui, Y.J.; Yahia-Aissa, M.; Delage, P. A model for the volume change behavior of heavily compacted swelling clays. Eng. Geol. 2002, 64, 233–250. [Google Scholar] [CrossRef]
- Liu, Y. Investigation on the swelling properties and microstructure mechanism of compacted Gaomiaozi bentonite. J. Eng. Geol. 2016, 24, 451–458. [Google Scholar]
- Cuisinier, O.; Auriol, J.C.; Le Borgne, T.; Deneele, D. Microstructure and hydraulic conductivity of a compacted lime-treated soil. Eng. Geol. 2011, 123, 187–193. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, B.; Han, S.; Wang, D.; Zhang, F. Mechanisms of crack development and strength deterioration in compacted expansive soils under controlled wetting-drying conditions. Eng. Fail. Anal. 2024, 159, 108133. [Google Scholar] [CrossRef]
- Azizi, A.; Musso, G.; Jommi, C. Effects of repeated hydraulic loads on microstructure and hydraulic behaviour of a compacted clayey silt. Can. Geotech. J. 2019, 57, 100–114. [Google Scholar] [CrossRef]
- Alonso, E.E.; Romero, E.; Hoffmann, C.; García-Escudero, E. Expansive bentonite-sand mixtures in cyclic controlled suction drying and wetting. Eng. Geol. 2005, 81, 213–226. [Google Scholar] [CrossRef]
- Liu, G.; Toll, D.G.; Kong, L.; Asquith, J.D. Matric suction and volume characteristics of compacted clay soil under drying and wetting cycles. Geotech. Test. J. 2020, 43, 20170310. [Google Scholar] [CrossRef]
- Dixon, N.; Crosby, C.J.; Stirling, R.; Hughes, P.N.; Smethurst, J.; Briggs, K.; Hughes, D.; Gunn, D.; Hobbs, P.; Loveridge, F.; et al. In situ measurements of near-surface hydraulic conductivity in engineered clay slopes. Q. J. Eng Geol. Hydrogeol. 2019, 52, 123–135. [Google Scholar] [CrossRef]
- Zhu, R.; Cai, Z.; Huang, Y.; Zhang, C.; Guo, W.; Wang, Y. Effects of wetting-drying-freezing-thawing cycles on mechanical behaviours of expansive soil. Cold Reg. Sci. Technol. 2022, 193, 103422. [Google Scholar] [CrossRef]
- Hafhouf, I.; Khelifa, A. Impact of drying-wetting cycles on shear properties, suction, and collapse of Sebkha soils. Heliyon 2023, 9, e13594. [Google Scholar] [CrossRef]
- Nahlawi, H.; Kodikara, J. Laboratory Experiments on Desiccation Cracking of Thin Soil Layers. Geotech. Geol. Eng. 2006, 24, 1641–1664. [Google Scholar] [CrossRef]
- Rahardjo, H.; Leong, E.C.; Rezaur, R.B. Effect of antecedent rainfall on pore-water pressure distribution characteristics in residual soil slopes. J. Hydrol. 2004, 287, 24–42. [Google Scholar]
- Anderson, M.G.; Hubbard, M.G.; Kneale, P.E. The influence of shrinkage cracks on pore-water pressures within a clay embankment. Q. J. Engng Geol. Hydrogeol. 1982, 15, 9–14. [Google Scholar] [CrossRef]
- Dyer, M.; Utili, S.; Zielinski, M. Field survey of desiccation fissuring of flood embankments. Proc. Instn Civ. Engrs–Wat. Manag. 2009, 162, 221–232. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Zhan, L.T.; Bao, C.G.; Fredlund, D.G.; Gong, B.W. Performance of an unsaturated expansive soil slope subjected to artificial rainfall infiltration. Géotechnique 2003, 53, 143–157. [Google Scholar] [CrossRef]
Initial Condition | Final Condition | Boundary Conditions |
---|---|---|
The groundwater table is shown in Figure 3. | Flood level to the crest of the embankment, as shown in Figure 3. |
|
Parameter | Clay | Silty Sand | ||
---|---|---|---|---|
1 wd Cycle | 10 wd Cycles | 1 wd Cycle | 10 wd Cycles | |
dry density (kN/m3) | 16.2 | 16.2 | 16 | 16 |
saturated density (kN/m3) | 18.5 | 18.5 | 18 | 18 |
initial void ratio | 0.67 | 0.67 | 0.66 | 0.65 |
effective angle of internal friction (deg.) | 28.5 | 20.1 | 34.6 | 37.5 |
effective cohesion (kN/m2) | 10 | 10 | 1 | 1 |
saturated hydraulic conductivity (m/d) | 0.0051 | 0.0331 | 1.061 | 1.032 |
van Genuchten parameter, α (1/m) | 0.5 | 0.45 | 4.5 | 4.5 |
van Genuchten parameter, n (-) | 1.25 | 1.19 | 1.84 | 1.77 |
saturated moisture content (m3/m3) | 0.46 | 0.43 | 0.41 | 0.40 |
Type | Condition | Flooding Time (Days) | Inflow (m3/m/Day) | Outflow (m3/m/Day) | Difference (m3/m/Day) | Factor of Safety |
---|---|---|---|---|---|---|
Clay embankment | 0 wd—new embankment | 0 | 0.001 | 0.001 | 0 | 2.47 |
1 | 0.225 | 0.001 | 0.224 | 2.47 | ||
5 | 0.127 | 0.001 | 0.126 | 2.47 | ||
10 | 0.127 | 0.001 | 0.126 | 2.47 | ||
Clay embankment | 10 wd—aged embankment | 0 | 0.005 | 0.001 | 0.004 | 1.99 |
1 | 0.749 | 0.006 | 0.743 | 1.99 | ||
5 | 0.754 | 0.006 | 0.748 | 1.72 | ||
10 | 0.756 | 0.006 | 0.750 | 1.64 | ||
Silty sand embankment | 0 wd—new embankment | 0 | 0.177 | 0.177 | 0 | 1.68 |
1 | 4.777 | 0.529 | 4.248 | 1.68 | ||
5 | 2.786 | 2.062 | 0.724 | 1.23 | ||
10 | 2.539 | 2.462 | 0.077 | 1.06 | ||
Silty sand embankment | 10 wd—aged embankment | 0 | 0.171 | 0.171 | 0 | 1.84 |
1 | 4.614 | 0.528 | 4.086 | 1.84 | ||
5 | 2.775 | 1.873 | 0.902 | 1.33 | ||
10 | 2.554 | 2.306 | 0.248 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.S.A.; Turrakheil, K.S.; Naveed, M. Impact of Wetting and Drying Cycles on the Hydromechanical Properties of Soil and Implications on Slope Stability. Atmosphere 2024, 15, 1368. https://doi.org/10.3390/atmos15111368
Shah SSA, Turrakheil KS, Naveed M. Impact of Wetting and Drying Cycles on the Hydromechanical Properties of Soil and Implications on Slope Stability. Atmosphere. 2024; 15(11):1368. https://doi.org/10.3390/atmos15111368
Chicago/Turabian StyleShah, Syed Samran Ali, Kanishka Sauis Turrakheil, and Muhammad Naveed. 2024. "Impact of Wetting and Drying Cycles on the Hydromechanical Properties of Soil and Implications on Slope Stability" Atmosphere 15, no. 11: 1368. https://doi.org/10.3390/atmos15111368
APA StyleShah, S. S. A., Turrakheil, K. S., & Naveed, M. (2024). Impact of Wetting and Drying Cycles on the Hydromechanical Properties of Soil and Implications on Slope Stability. Atmosphere, 15(11), 1368. https://doi.org/10.3390/atmos15111368