A Trend Analysis of Changes in Cooling Degree Days in West Africa Under Global Warming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology
- Tm (°C): Mean temperature of the day k;
- Tb (°C): Base temperature;
- Tmax (°C): Maximum temperature of the day k;
- Tmin (°C): Minimum temperature of the day k.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sherman, P.; Lin, H.; McElroy, M. Projected global demand for air conditioning associated with extreme heat and implications for electricity grids in poorer countries. Energy Build. 2022, 268, 112198. [Google Scholar] [CrossRef]
- ExxonMobil. The Outlook for Energy: A View to 2040; ExxonMobil: Spring, TX, USA, 2016. [Google Scholar]
- IEA and UNEP. 2018 Global Status Report: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector. 2018. Available online: https://wedocs.unep.org/xmlui/handle/20.500.11822/27140 (accessed on 2 September 2023).
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Li, Y.L.; Han, M.Y.; Liu, S.Y.; Chen, G.Q. Energy consumption and greenhouse gas emissions by buildings: A multi-scale perspective. Build. Environ. 2019, 151, 240–250. [Google Scholar] [CrossRef]
- Kheiri, F.; Haberl, J.S.; Baltazar, J.C. Split-degree day method: A novel degree day method for improving building energy performance estimation. Energy Build. 2023, 289, 113034. [Google Scholar] [CrossRef]
- Mourshed, M. Relationship between annual mean temperature and degree-days. Energy Build. 2012, 54, 418–425. [Google Scholar] [CrossRef]
- Erbs, D.G.; Beckman, W.A.; Klein, S.A. Estimation of degree-days and ambient temperature bin data from monthly-average temperatures. ASHRAE J. 1983, 25, 60–65. [Google Scholar]
- Schoenau, G.J.; Kehrig, R.A. Method for calculating degree-days to any base temperature. Energy Build. 1990, 14, 299–302. [Google Scholar] [CrossRef]
- Thevenard, D. Methods for estimating heating and cooling degree-days to any base temperature. ASHRAE Trans. 2011, 117, 884–892. Available online: https://link.gale.com/apps/doc/A257557873/AONE?u=anon~356bd3d9&sid=googleScholar&xid=62211164 (accessed on 19 August 2024).
- Mistry, M.N. Historical global gridded degree-days: A high-spatial resolution database of CDD and HDD. Geosci. Data J. 2019, 6, 214–221. [Google Scholar] [CrossRef]
- Akara, G.K.; Hingray, B.; Diawara, A.; Diedhiou, A. Effect of weather on monthly electricity consumption in three coastal cities in West Africa. AIMS Energy 2021, 9, 446–464. [Google Scholar] [CrossRef]
- Odou, O.D.T.; Ursula, H.H.; Adamou, R.; Godjo, T.; Moussa, M.S. Potential changes in cooling degree day under different global warming levels and shared socioeconomic pathways in West Africa. Environ. Res. Lett. 2023, 18, 034029. [Google Scholar] [CrossRef]
- Awolola, O.O.; Olorunmaiye, J.A. Cooling Degree Days for Estimating Energy Consumption in Air Conditioning Systems in Nigeria. J. Clean Energy Technol. 2020, 8, 5–10. [Google Scholar] [CrossRef]
- Falchetta, G.; Mistry, M.N. The role of residential air circulation and cooling demand for electrification planning: Implications of climate change in sub-Saharan Africa. Energy Econ. 2021, 99, 105307. [Google Scholar] [CrossRef]
- Bilgili, M. Time series forecasting on cooling degree-days (CDD) using SARIMA model. Nat. Hazards 2023, 118, 2569–2592. [Google Scholar] [CrossRef]
- De Rosa, M.; Bianco, V.; Scarpa, F.; Tagliafico, L.A. Historical trends and current state of heating and cooling degree days in Italy. Energy Convers. Manag. 2015, 90, 323–335. [Google Scholar] [CrossRef]
- Harvey, L.D.D. Using modified multiple heating-degree-day (HDD) and cooling-degree-day (CDD) indices to estimate building heating and cooling loads. Energy Build. 2020, 229, 110475. [Google Scholar] [CrossRef]
- Idchabani, R.; Garoum, M.; Khaldoun, A. Analysis and mapping of the heating and cooling degree-days for Morocco at variable base temperatures. Int. J. Ambient Energy 2015, 36, 190–198. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Bardhan, R.; Chan, P.-W.; Derome, D.; Luo, Z.; Urge-Vorsatz, D.; Carmeliet, J. Aligning Three-Decade Surge in Urban Cooling with Global Warming. arXiv 2023, arXiv:2301.11565v2. [Google Scholar]
- Li, Y.; He, T.; Wang, Y.; Sun, L.; Yan, Y.; Zhao, G. Spatiotemporal variations, influence factors, and simulation of global cooling degree days. Environ. Sci. Pollut. Res. 2023, 30, 26625–26635. [Google Scholar] [CrossRef]
- Miranda, N.D.; Lizana, J.; Sparrow, S.N.; Zachau-Walker, M.; Watson, P.A.; Wallom, D.C.; Khosla, R.; McCulloch, M. Change in cooling degree days with global mean temperature rise increasing from 1.5 °C to 2.0 °C. Nat. Sustain. 2023, 6, 1326–1330. [Google Scholar] [CrossRef]
- Scoccimarro, E.; Cattaneo, O.; Gualdi, S.; Mattion, F.; Bizeul, A.; Risquez, A.M.; Quadrelli, R. Country-level energy demand for cooling has increased over the past two decades. Commun. Earth Environ. 2023, 4, 208. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, D.F.; Xu, Y.; Zhou, B.T. Changes of heating and cooling degree days over China in response to global warming of 1.5 °C, 2 °C, 3 °C and 4 °C. Adv. Clim. Chang. Res. 2018, 9, 192–200. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Barbosa, P.; Dosio, A.; McCormick, N.; Bigano, A.; Füssel, H.M. Changes of heating and cooling degree-days in Europe from 1981 to 2100. Int. J. Climatol. 2018, 38, e191–e208. [Google Scholar] [CrossRef]
- Ukey, R.; Rai, A.C. Impact of global warming on heating and cooling degree days in major Indian cities. Energy Build. 2021, 244, 111050. [Google Scholar] [CrossRef]
- Akinseye, F.M. Improving sorghum productivity under changing climatic conditions: A modelling approach. Field Crops Res. 2020, 246, 107685. [Google Scholar] [CrossRef]
- Aguilar, E.; Auer, I.; Brunet, M.; Peterson, T.C.; Wieringa, J. Guidelines on Climates Metadata and Homogeneization; World Meteorological Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Lee, K.; Baek, H.J.; Cho, C.H. The Estimation of Base Temperature for Heating and Cooling Degree-Days for South Korea. J. Appl. Meteorol. Climatol. 2014, 53, 300–309. [Google Scholar] [CrossRef]
- Büyükalaca, O.; Bulut, H.; Yılmaz, T. Analysis of variable-base heating and cooling degree-days for turkey. Appl. Energy 2001, 69, 269–283. [Google Scholar] [CrossRef]
- Dombayci, Ö.A. Degree-days maps of Turkey for various base temperatures. Energy 2009, 34, 1807–1812. [Google Scholar] [CrossRef]
- Satman, A.; Yalcinkaya, N. Heating and cooling degree-hours for Turkey. Energy 1999, 24, 833–840. [Google Scholar] [CrossRef]
- Indraganti, M.; Boussaa, D. A method to estimate the heating and cooling degree-days for different climatic zones of Saudi Arabia. Build. Serv. Eng. Res. Technol. 2016, 38, 327–350. [Google Scholar] [CrossRef]
- Jones, P.D.; Harpham, C.; Harris, I.; Goodess, C.M.; Burton, A.; Centella-Artola, A.; Taylor, M.A.; Bezanilla-Morlot, A.; Campbell, J.D.; Stephenson, T.S.; et al. Long-term trends in precipitation and temperature across the Caribbean. Int. J. Climatol. 2016, 36, 3314–3333. [Google Scholar] [CrossRef]
- Woollings, T.; Harvey, B.; Masato, G. Arctic warming, atmospheric blocking and cold European winters in CMIP5 models. Environ. Res. Lett. 2014, 9, 014002. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods. 1948. Available online: https://psycnet.apa.org/record/1948-15040-000 (accessed on 21 February 2024).
- Islam, A.R.M.T.; Ahmed, I.; Rahman, M.S. Trends in cooling and heating degree-days overtimes in Bangladesh? An investigation of the possible causes of changes. Nat. Hazards 2020, 101, 879–909. [Google Scholar] [CrossRef]
- Sadeqi, A.; Tabari, H.; Dinpashoh, Y. Spatio-temporal analysis of heating and cooling degree-days over Iran. Stoch. Environ. Res. Risk Assess. 2022, 36, 869–891. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res. 2002, 38, 4-1–4-7. [Google Scholar] [CrossRef]
- Kofar-Bai, D.G.; Zheng, Q. Climate Effects on Cooling Degree-Hours and Evaporative Cooling of Gas Turbine. J. Clean Energy Technol. 2017, 5, 347–352. [Google Scholar] [CrossRef]
- Atalla, T.; Gualdi, S.; Lanza, A. A global degree days database for energy-related applications. Energy 2018, 143, 1048–1055. [Google Scholar] [CrossRef]
- Tian, C.; Huang, G.; Lu, C.; Zhou, X.; Duan, R. Development of enthalpy-based climate indicators for characterizing building cooling and heating energy demand under climate change. Renew. Sustain. Energy Rev. 2021, 143, 110799. [Google Scholar] [CrossRef]
- Cao, J.; Shi, J.; Li, M.; Zhai, Z.; Zhang, R.; Wang, M. Variations of Cooling and Dehumidification Degree Days in Major Climate Zones of China during the Past 57 Years. Atmosphere 2023, 14, 752. [Google Scholar] [CrossRef]
- Andrade, C.; Mourato, S.; Ramos, J.; Monteiro, A.; Carvalho, D.; Gama, C. Heating and Cooling Degree-Days Climate Change Projections for Portugal. Atmosphere 2021, 12, 715. [Google Scholar] [CrossRef]
- Karl, T.R.; Arguez, A.; Huang, B.; Lawrimore, J.H.; McMahon, J.R.; Menne, M.J.; Peterson, T.C.; Vose, R.S.; Zhang, H.M. Possible artifacts of data biases in the recent global surface warming hiatus. Science 2015, 348, 1469–1472. [Google Scholar] [CrossRef] [PubMed]
- Tollefson, J. 2015 Declared the hottest year on record. Nature 2016, 529, 450. [Google Scholar] [CrossRef]
- Halimatou, A.T.; Kalifa, T.; Kyei-Baffour, N. Assessment of changing trends of daily precipitation and temperature extremes in Bamako and Ségou in Mali from 1961–2014. Weather. Clim. Extrem. 2017, 18, 8–16. [Google Scholar] [CrossRef]
- Sawadogo, W.; Neya, T.; Semde, I.; Korahiré, J.A.; Combasséré, A.; Traoré, D.E.; Ouedraogo, P.; Diasso, U.J.; Abiodun, B.J.; Bliefernicht, J.; et al. Potential impacts of climate change on the sudan-sahel region in West Africa—Insights from Burkina Faso. Environ. Chall. 2024, 15, 100860. [Google Scholar] [CrossRef]
- Sylla, M.B.; Nikiema, P.M.; Gibba, P.; Kebe, I.; Klutse, N.A.B. Climate change over West Africa: Recent trends and future projections. In Adaptation to Climate Change and Variability in Rural West Africa; Springer: Cham, Switzerland, 2016; pp. 25–40. [Google Scholar] [CrossRef]
- Diedhiou, A.; Bichet, A.; Wartenburger, R.; Seneviratne, S.I.; Rowell, D.P.; Sylla, M.B.; Diallo, I.; Todzo, S.; Touré, N.D.E.; Camara, M.; et al. Changes in climate extremes over West and Central Africa at 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 065020. [Google Scholar] [CrossRef]
- Macadam, I.; Rowell, D.P.; Steptoe, H. Refining projections of future temperature change in West Africa. Clim. Res. 2020, 82, 1–14. [Google Scholar] [CrossRef]
- Bilgili, A.; Çelik, K.; Bilgili, M. Analysis of historical and future cooling degree days over Türkiye for facade design and energy efficiency in buildings. J. Therm. Anal. Calorim. 2024, 149, 7413–7431. [Google Scholar] [CrossRef]
Base Temperature | |||||||||
---|---|---|---|---|---|---|---|---|---|
Year | 22 °C | 23 °C | 24 °C | 25 °C | 26 °C | 27 °C | 28 °C | 29 °C | 30 °C |
1992 | 1628 | 1331 | 1054 | 803 | 585 | 409 | 272 | 170 | 99 |
1993 | 1824 | 1504 | 1206 | 932 | 685 | 478 | 323 | 215 | 137 |
1994 | 1725 | 1406 | 1101 | 817 | 569 | 377 | 243 | 150 | 87 |
1995 | 1733 | 1403 | 1097 | 823 | 589 | 399 | 259 | 163 | 96 |
1996 | 1867 | 1517 | 1196 | 912 | 669 | 464 | 314 | 210 | 130 |
1997 | 2007 | 1681 | 1365 | 1062 | 786 | 548 | 365 | 231 | 134 |
1998 | 1933 | 1613 | 1304 | 1012 | 748 | 534 | 376 | 263 | 179 |
1999 | 1902 | 1582 | 1275 | 984 | 736 | 548 | 404 | 287 | 184 |
2000 | 1753 | 1445 | 1154 | 888 | 661 | 476 | 333 | 227 | 148 |
2001 | 1651 | 1341 | 1052 | 792 | 571 | 394 | 254 | 155 | 92 |
2002 | 1941 | 1638 | 1347 | 1070 | 825 | 614 | 446 | 318 | 215 |
2003 | 1881 | 1557 | 1249 | 967 | 825 | 517 | 357 | 238 | 159 |
2004 | 1927 | 1609 | 1309 | 1029 | 779 | 557 | 377 | 239 | 142 |
2005 | 2026 | 1709 | 1402 | 1119 | 861 | 639 | 452 | 313 | 204 |
2006 | 1854 | 1527 | 1215 | 926 | 663 | 444 | 274 | 157 | 82 |
2007 | 1814 | 1495 | 1194 | 911 | 651 | 433 | 282 | 179 | 111 |
2008 | 1758 | 1434 | 1133 | 859 | 614 | 418 | 268 | 155 | 79 |
2009 | 1952 | 1619 | 1309 | 1016 | 743 | 506 | 326 | 198 | 117 |
2010 | 2089 | 1760 | 1450 | 1154 | 881 | 645 | 457 | 315 | 206 |
2011 | 1833 | 1533 | 1245 | 971 | 722 | 509 | 339 | 221 | 142 |
2012 | 1889 | 1565 | 1254 | 964 | 708 | 506 | 352 | 238 | 158 |
2013 | 1872 | 1552 | 1251 | 976 | 738 | 540 | 384 | 260 | 162 |
2014 | 1654 | 1374 | 1112 | 867 | 646 | 465 | 323 | 211 | 125 |
2015 | 2220 | 1884 | 1557 | 1247 | 961 | 711 | 500 | 338 | 218 |
2016 | 1938 | 1639 | 1355 | 1088 | 843 | 632 | 468 | 339 | 239 |
2017 | 1809 | 1487 | 1192 | 923 | 683 | 485 | 338 | 235 | 160 |
2018 | 1863 | 1563 | 1279 | 1009 | 762 | 555 | 391 | 265 | 167 |
2019 | 1851 | 1540 | 1245 | 968 | 719 | 517 | 362 | 249 | 163 |
2020 | 1764 | 1460 | 1187 | 942 | 729 | 552 | 412 | 307 | 217 |
2021 | 1882 | 1573 | 1282 | 1006 | 758 | 562 | 410 | 287 | 184 |
2022 | 1427 | 1159 | 912 | 692 | 511 | 372 | 267 | 188 | 118 |
Base Temperature | |||||||||
---|---|---|---|---|---|---|---|---|---|
Year | 22 °C | 23 °C | 24 °C | 25 °C | 26 °C | 27 °C | 28 °C | 29 °C | 30 °C |
1992 | 2272 | 1908 | 1551 | 1211 | 900 | 629 | 411 | 255 | 155 |
1993 | 2349 | 1996 | 1652 | 1324 | 1023 | 763 | 541 | 361 | 233 |
1994 | 2156 | 1795 | 1448 | 1128 | 841 | 603 | 424 | 294 | 191 |
1995 | 2143 | 1785 | 1438 | 1118 | 829 | 583 | 393 | 253 | 152 |
1996 | 2306 | 1941 | 1580 | 1227 | 905 | 642 | 436 | 277 | 173 |
1997 | 2196 | 1834 | 1482 | 1142 | 822 | 543 | 329 | 194 | 111 |
1998 | 2425 | 2062 | 1707 | 1370 | 1060 | 788 | 568 | 400 | 276 |
1999 | 2076 | 1721 | 1380 | 1071 | 803 | 605 | 462 | 339 | 234 |
2000 | 2137 | 1775 | 1422 | 1097 | 808 | 575 | 400 | 275 | 181 |
2001 | 2286 | 1921 | 1563 | 1218 | 904 | 640 | 441 | 291 | 185 |
2002 | 2374 | 2010 | 1650 | 1303 | 985 | 724 | 520 | 361 | 243 |
2003 | 2257 | 1897 | 1546 | 1223 | 936 | 699 | 513 | 369 | 252 |
2004 | 2216 | 1853 | 1502 | 1168 | 865 | 615 | 419 | 270 | 162 |
2005 | 2318 | 1954 | 1600 | 1260 | 939 | 666 | 461 | 311 | 200 |
2006 | 2009 | 1655 | 1317 | 1002 | 726 | 507 | 344 | 229 | 146 |
2007 | 2313 | 1960 | 1616 | 1287 | 986 | 733 | 531 | 378 | 257 |
2008 | 2077 | 1735 | 1408 | 1096 | 816 | 581 | 401 | 267 | 167 |
2009 | 2286 | 1932 | 1589 | 1264 | 976 | 720 | 517 | 354 | 234 |
2010 | 2292 | 1935 | 1590 | 1266 | 974 | 721 | 518 | 363 | 243 |
2011 | 2070 | 1714 | 1376 | 1064 | 791 | 576 | 411 | 286 | 188 |
2012 | 1923 | 1572 | 1233 | 925 | 648 | 431 | 283 | 182 | 107 |
2013 | 2220 | 1871 | 1540 | 1223 | 939 | 693 | 504 | 362 | 249 |
2014 | 2143 | 1785 | 1434 | 1103 | 803 | 556 | 368 | 235 | 148 |
2015 | 2114 | 1764 | 1433 | 1124 | 841 | 601 | 420 | 286 | 181 |
2016 | 2278 | 1916 | 1560 | 1219 | 904 | 638 | 438 | 296 | 196 |
2017 | 2255 | 1897 | 1546 | 1215 | 921 | 675 | 479 | 336 | 223 |
2018 | 2166 | 1807 | 1456 | 1126 | 828 | 584 | 398 | 257 | 160 |
2019 | 2098 | 1747 | 1412 | 1096 | 806 | 567 | 394 | 273 | 182 |
2020 | 2058 | 1703 | 1359 | 1038 | 762 | 538 | 378 | 260 | 171 |
2021 | 2267 | 1903 | 1543 | 1197 | 880 | 610 | 399 | 248 | 149 |
2022 | 2093 | 1736 | 1396 | 1083 | 804 | 575 | 400 | 276 | 177 |
Year | Maximum Temperature (°C) | Minimum Temperature (°C) | Annual Average Temperature (°C) |
---|---|---|---|
1992 | 33 | 20 | 26 |
1993 | 34 | 20 | 27 |
1994 | 33 | 20 | 27 |
1995 | 33 | 20 | 27 |
1996 | 34 | 20 | 27 |
1997 | 34 | 21 | 27 |
1998 | 33 | 21 | 27 |
1999 | 34 | 20 | 27 |
2000 | 33 | 20 | 27 |
2001 | 33 | 19 | 26 |
2002 | 34 | 20 | 27 |
2003 | 24 | 20 | 27 |
2004 | 34 | 20 | 27 |
2005 | 34 | 21 | 27 |
2006 | 33 | 21 | 27 |
2007 | 33 | 20 | 27 |
2008 | 33 | 20 | 27 |
2009 | 33 | 21 | 27 |
2010 | 34 | 21 | 28 |
2011 | 34 | 20 | 27 |
2012 | 34 | 20 | 27 |
2013 | 34 | 19 | 27 |
2014 | 34 | 19 | 26 |
2015 | 35 | 21 | 28 |
2016 | 34 | 20 | 27 |
2017 | 34 | 20 | 27 |
2018 | 34 | 20 | 27 |
2019 | 34 | 20 | 27 |
2020 | 34 | 20 | 27 |
2021 | 35 | 19 | 27 |
2022 | 33 | 18 | 25 |
Year | Maximum Temperature (°C) | Minimum Temperature (°C) | Annual Average Temperature (°C) |
---|---|---|---|
1992 | 34 | 22 | 28 |
1993 | 35 | 22 | 28 |
1994 | 34 | 22 | 28 |
1995 | 34 | 22 | 28 |
1996 | 35 | 22 | 28 |
1997 | 34 | 22 | 28 |
1998 | 35 | 22 | 29 |
1999 | 33 | 22 | 28 |
2000 | 34 | 33 | 28 |
2001 | 35 | 22 | 28 |
2002 | 35 | 22 | 29 |
2003 | 35 | 22 | 28 |
2004 | 35 | 21 | 28 |
2005 | 35 | 22 | 28 |
2006 | 35 | 20 | 27 |
2007 | 35 | 22 | 28 |
2008 | 35 | 20 | 28 |
2009 | 35 | 22 | 28 |
2010 | 35 | 21 | 28 |
2011 | 34 | 21 | 28 |
2012 | 34 | 20 | 27 |
2013 | 35 | 21 | 28 |
2014 | 35 | 21 | 28 |
2015 | 35 | 21 | 28 |
2016 | 35 | 22 | 28 |
2017 | 35 | 21 | 28 |
2018 | 35 | 21 | 28 |
2019 | 35 | 21 | 28 |
2020 | 35 | 21 | 28 |
2021 | 35 | 21 | 28 |
2022 | 35 | 21 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dicko, K.; Umaru, E.T.; Sanogo, S.; Okhimamhe, A.A.; Loewner, R. A Trend Analysis of Changes in Cooling Degree Days in West Africa Under Global Warming. Atmosphere 2024, 15, 1376. https://doi.org/10.3390/atmos15111376
Dicko K, Umaru ET, Sanogo S, Okhimamhe AA, Loewner R. A Trend Analysis of Changes in Cooling Degree Days in West Africa Under Global Warming. Atmosphere. 2024; 15(11):1376. https://doi.org/10.3390/atmos15111376
Chicago/Turabian StyleDicko, Kagou, Emmanuel Tanko Umaru, Souleymane Sanogo, Appollonia Aimiosino Okhimamhe, and Ralf Loewner. 2024. "A Trend Analysis of Changes in Cooling Degree Days in West Africa Under Global Warming" Atmosphere 15, no. 11: 1376. https://doi.org/10.3390/atmos15111376
APA StyleDicko, K., Umaru, E. T., Sanogo, S., Okhimamhe, A. A., & Loewner, R. (2024). A Trend Analysis of Changes in Cooling Degree Days in West Africa Under Global Warming. Atmosphere, 15(11), 1376. https://doi.org/10.3390/atmos15111376