Seasonal and Diurnal Characteristics and Drivers of Urban Heat Island Based on Optimal Parameters-Based Geo-Detector Model in Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Methods
2.3.1. Surface Urban Heat Island Intensity
2.3.2. Urban Form
2.3.3. Pearson’s Correlation Analysis
2.3.4. Optimal Parameters-Based Geographic Detector (OPGD)
2.4. Study Steps
3. Results
3.1. Seasonal and Diurnal Characteristics of the SUHI
3.2. Relationship Between Urban Size and the SUHII
3.3. Impact Factors of the SUHII
3.3.1. Descriptive Statistical Analysis of SUHII Impact Factors
3.3.2. Pearson’s Correlation Analysis of the SUHII Impact Factors
3.3.3. The Results of the OPGD Analysis
4. Discussion
4.1. Seasonal and Diurnal Characteristics of the SUHI in an Arid Region
4.2. Driving Factors of the SUHII
4.2.1. Impacts of Natural Factors on the SUHII
4.2.2. Impacts of Urban Size and Urban Form on the SUHII
4.2.3. Impacts of Socio-Economic Factors on the SUHII
4.3. Policy Suggestions
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manoli, G.; Fatichi, S.; Schlapfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, A.M.; Dennis, Y.C.L.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- He, B.-J.; Wang, J.; Zhu, J.; Qi, J. Beating the urban heat: Situation, background, impacts and the way forward in China. Renew. Sustain. Energy Rev. 2022, 161, 112350. [Google Scholar] [CrossRef]
- Piracha, A.; Chaudhary, M.T. Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature. Sustainability 2022, 14, 9234. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Gao, S. Comparative analysis of variations and patterns between surface urban heat island intensity and frequency across 305 Chinese cities. Remote Sens. 2021, 13, 3505. [Google Scholar] [CrossRef]
- Howard, L. The Climate of London: Deduced from Meteorological Observations Made in the Metropolis and at Various Places Around It; Harvey, Darton, J., Arch, A., Longman, Hatchard, Highley, S., Hunter, R., Eds.; Forgotten Books: London, UK, 1833; Volume 3. [Google Scholar]
- Manley, G. On the frequency of snowfall in metropolitan England. Q. J. R. Meteorol. Soc. 1958, 84, 70–72. [Google Scholar] [CrossRef]
- Krishna, R. Remote sensing of urban heat islands from an environmental satellite. Bull. Am. Meteorol. Soc. 1972, 53, 647–648. [Google Scholar]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2018, 11, 48. [Google Scholar] [CrossRef]
- Ma, Y.; Mamitimin, Y.; Tiemuerbieke, B.; Yimaer, R.; Huang, M.; Chen, H.; Tao, T.; Guo, X. Spatiotemporal Characteristics and Influencing Factors of Urban Heat Island Based on Geographically Weighted Regression Model: A Case Study of Urumqi City. Land 2023, 12, 2012. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Muradyan, V.; Hovsepyan, A.; Pinigin, G.; Medvedev, A.; Asmaryan, S. Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan, Armenia. Build. Environ. 2021, 187, 107390. [Google Scholar] [CrossRef]
- Monteiro, F.F.; Gonçalves, W.A.; Andrade, L.d.M.B.; Villavicencio, L.M.M.; dos Santos Silva, C.M. Assessment of Urban Heat Islands in Brazil based on MODIS remote sensing data. Urban Clim. 2021, 35, 100726. [Google Scholar] [CrossRef]
- Tomlinson, C.; Chapman, L.; Thornes, J.; Baker, C.J. Derivation of Birmingham’s summer surface urban heat island from MODIS satellite images. Int. J. Climatol. 2012, 32, 214–224. [Google Scholar] [CrossRef]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Si, M.; Li, Z.-L.; Nerry, F.; Tang, B.-H.; Leng, P.; Wu, H.; Zhang, X.; Shang, G. Spatiotemporal pattern and long-term trend of global surface urban heat islands characterized by dynamic urban-extent method and MODIS data. ISPRS J. Photogramm. Remote Sens. 2022, 183, 321–335. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Ma, Q.; Cao, W.; Zhang, H.; Wang, Z. Impacts of spatial explanatory variables on surface urban heat island intensity between urban and suburban regions in China. Int. J. Digit. Earth 2024, 17, 2304074. [Google Scholar] [CrossRef]
- Hamdi, I.; Fawzy, M.; Zelenakova, M.; Abbas, W. Heat Island dynamics and heat stress implications on the population of El-Mansourah conurbation, Egypt: Temporal and proposed solutions using MODIS imagery and ENVI-met simulation. Geomat. Nat. Hazards Risk 2024, 15, 2291328. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S. Urban heat island effect and its drivers in large cities of Pakistan. Theor. Appl. Climatol. 2024, 155, 5433–5452. [Google Scholar] [CrossRef]
- Si, M.; Yao, N.; Li, Z.-L.; Liu, X.; Tang, B.-H.; Nerry, F. Feasibility of Urban-Rural Temperature Difference Method in Surface Urban Heat Island Analysis under Non-Uniform Rural Landcover: A Case Study in 34 Major Urban Agglomerations in China. Remote Sens. 2024, 16, 1232. [Google Scholar] [CrossRef]
- Shastri, H.; Ghosh, S. Urbanization and surface urban heat island intensity (SUHII). In Climate Change Signals and Response; Springer: Singapore, 2019; pp. 73–90. [Google Scholar]
- Peng, S.; Feng, Z.; Liao, H.; Huang, B.; Peng, S.; Zhou, T. Spatial-temporal pattern of, and driving forces for, urban heat island in China. Ecol. Indic. 2019, 96, 127–132. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, C.; Geng, X.; Yu, Z.; Fan, Z.; Wang, X. Natural-anthropogenic environment interactively causes the surface urban heat island intensity variations in global climate zones. Environ. Int. 2022, 170, 107574. [Google Scholar] [CrossRef]
- Guan, Y.; Quan, J.; Ma, T.; Cao, S.; Xu, C.; Guo, J. Identifying Major Diurnal Patterns and Drivers of Surface Urban Heat Island Intensities across Local Climate Zones. Remote Sens. 2023, 15, 5061. [Google Scholar] [CrossRef]
- Cao, C.; Li, X.-h.; Zhang, M.; Liu, S.-d.; Xu, J.-p. Correlation Analysis of the Urban Heat Island Effect and Its Impact Factors in China. Huanjing Kexue 2017, 38, 3987–3997. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Chen, Y.; Wang, M.; Gong, A. Spatial-temporal variations of surface urban heat island intensity induced by different definitions of rural extents in China. Sci. Total Environ. 2019, 669, 229–247. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xu, Y.; Tong, X.; Hu, T.; Liu, Y.; Chakraborty, T.C.; Yao, R.; Xiao, C.; Chen, S.; Ma, Z. Influence of urban extent discrepancy on the estimation of surface urban heat island intensity: A global-scale assessment in 892 cities. J. Clean. Prod. 2023, 426, 139032. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Y.; Wang, Y.; Liu, L.; Zhao, S. The influence of climate and human factors on a regional heat island in the Zhengzhou metropolitan area, China. Environ. Res. 2024, 249, 118331. [Google Scholar] [CrossRef]
- Siddiqui, A.; Kushwaha, G.; Nikam, B.; Srivastav, S.K.; Shelar, A.; Kumar, P. Analyzing the day/night seasonal and annual changes and trends in land surface temperature and surface urban heat island intensity (SUHII) for Indian cities. Sustain. Cities Soc. 2021, 75, 103374. [Google Scholar] [CrossRef]
- Xi, Y.; Wang, S.; Zou, Y.; Zhou, X.; Zhang, Y. Seasonal surface urban heat island analysis based on local climate zones. Ecol. Indic. 2024, 159, 111669. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udias, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Dewan, A.; Kiselev, G.; Botje, D.; Mahmud, G.I.; Bhuian, M.H.; Hassan, Q.K. Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends. Sustain. Cities Soc. 2021, 71, 102926. [Google Scholar] [CrossRef]
- Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Cao, C.; Lee, X.; Liu, S.; Schultz, N.; Xiao, W.; Zhang, M.; Zhao, L. Urban heat islands in China enhanced by haze pollution. Nat. Commun. 2016, 7, 12509. [Google Scholar] [CrossRef]
- Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/Land Cover in Tehran. Sustain. Cities Soc. 2016, 23, 94–104. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Han, G.; Li, L.; Qin, H. The impact of macro-scale urban form on land surface temperature: An empirical study based on climate zone, urban size and industrial structure in China. Sustain. Cities Soc. 2021, 74, 103217. [Google Scholar] [CrossRef]
- Zhao, M.; Cai, H.; Qiao, Z.; Xu, X. Influence of urban expansion on the urban heat island effect in Shanghai. Int. J. Geogr. Inf. Sci. 2016, 30, 2421–2441. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef]
- Liu, H.; Huang, B.; Zhan, Q.; Gao, S.; Li, R.; Fan, Z. The influence of urban form on surface urban heat island and its planning implications: Evidence from 1288 urban clusters in China. Sustain. Cities Soc. 2021, 71, 102987. [Google Scholar] [CrossRef]
- Saaroni, H.; Ben-Dor, E.; Bitan, A.; Potchter, O. Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landsc. Urban Plan. 2000, 48, 1–18. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Z.-f.; Ye, X.-y.; Cai, Y.-b.; Ma, W.-c.; Chen, M.-n. Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl. Geogr. 2013, 44, 121–133. [Google Scholar] [CrossRef]
- Guo, A.; Yang, J.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Influences of urban spatial form on urban heat island effects at the community level in China. Sustain. Cities Soc. 2020, 53, 101972. [Google Scholar] [CrossRef]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Y.; Cao, Z.; Yang, J.; Zhu, H. Impact of urban agglomeration and physical and socioeconomic factors on surface urban heat islands in the Pearl River Delta Region, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8815–8822. [Google Scholar] [CrossRef]
- Sidiqui, P.; Tariq, M.A.U.R.; Ng, A.W.M. An investigation to identify the effectiveness of socioeconomic, demographic, and buildings’ characteristics on surface urban heat island patterns. Sustainability 2022, 14, 2777. [Google Scholar] [CrossRef]
- Li, L.; Zha, Y.; Wang, R. Relationship of surface urban heat island with air temperature and precipitation in global large cities. Ecol. Indic. 2020, 117, 106683. [Google Scholar] [CrossRef]
- Wang, L.; Hou, H.; Weng, J. Ordinary least squares modelling of urban heat island intensity based on landscape composition and configuration: A comparative study among three megacities along the Yangtze River. Sustain. Cities Soc. 2020, 62, 102381. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.; Han, L. Exploring the spatial heterogeneity of urban heat island effect and its relationship to block morphology with the geographically weighted regression model. Sustain. Cities Soc. 2022, 76, 103431. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, C.; Su, Y.; Su, Y.; Yu, Q.; Li, W.; Yang, N. Spatio-temporal Evolution Characteristics and Driving Forces of Winter Urban Heat Island: A Case Study of Rapid Urbanization Area of Fuzhou City, China. Chin. Geogr. Sci. 2024, 34, 135–148. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Hu, D.; Meng, Q.; Zhang, L.; Zhang, Y. Spatial quantitative analysis of the potential driving factors of land surface temperature in different “Centers” of polycentric cities: A case study in Tianjin, China. Sci. Total Environ. 2020, 706, 135244. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Q.; Wei, P.; Zhao, H.; Zhang, X.; Pang, C. Explore the mitigation mechanism of urban thermal environment by integrating geographic detector and standard deviation ellipse (SDE). Remote Sens. 2022, 14, 3411. [Google Scholar] [CrossRef]
- Xiang, Y.; Huang, C.; Huang, X.; Zhou, Z.; Wang, X. Seasonal variations of the dominant factors for spatial heterogeneity and time inconsistency of land surface temperature in an urban agglomeration of central China. Sustain. Cities Soc. 2021, 75, 103285. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, X. Urumqi. Cities 2011, 28, 115–125. [Google Scholar] [CrossRef]
- Hu, H.; Sun, Y.; Zhao, H.; Liu, B.; Guo, R. Spatial-temporal Coupling Analysis of Economic Development-Social Development-Government Governance in Xinjiang, China. Chin. Geogr. Sci. 2023, 33, 410–425. [Google Scholar] [CrossRef]
- Wang, L.; Xu, W.; Xue, X.; Wang, H.; Li, Z.; Wang, Y. Analysis of Spatial and Temporal Changes and Drivers of Urban Sprawl in Xinjiang Based on Integrated DMSP-OLS and NPP-VIIRS Data. Land 2024, 13, 567. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, W.; Wang, B.; Song, K.; Zhang, Y.; Wang, R.; Bao, A. Effects of Geomorphic Spatial Differentiation on Vegetation Distribution Based on Remote Sensing and Geomorphic Regionalization. Remote Sens. 2024, 16, 1062. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Zhao, Y.; Guan, X.; Mao, W.; Yang, L. Climatic and associated atmospheric water cycle changes over the Xinjiang, China. J. Hydrol. 2020, 585, 124823. [Google Scholar] [CrossRef]
- Sun, Y. The achievement, significance and future prospect of China’s renewable energy initiative. Int. J. Energy Res. 2020, 44, 12209–12244. [Google Scholar] [CrossRef]
- Guan, J.; Yao, J.; Li, M.; Li, D.; Zheng, J. Historical changes and projected trends of extreme climate events in Xinjiang, China. Clim. Dyn. 2022, 59, 1753–1774. [Google Scholar] [CrossRef]
- Xu, H.; Li, C.; Hu, Y.; Wang, H.; Wen, D.; Li, Z.; Ping, X.; Wang, Q.; Li, Q. Spatiotemporal evolution and influencing factors of surface urban heat island footprint across different-sized cities. Urban Clim. 2024, 54, 101852. [Google Scholar] [CrossRef]
- Peng, J.; Qiao, R.; Wang, Q.; Yu, S.; Dong, J.; Yang, Z. Diversified evolutionary patterns of surface urban heat island in new expansion areas of 31 Chinese cities. NPJ Urban Sustain. 2024, 4, 14. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.; Zhang, Y.; Wu, J.; Li, W.; Li, Y. Evaluating the effectiveness of landscape metrics in quantifying spatial patterns. Ecol. Indic. 2010, 10, 217–223. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Z.; Du, H.; Zhan, W. Regulation of urban morphology on thermal environment across global cities. Sustain. Cities Soc. 2023, 97, 104749. [Google Scholar] [CrossRef]
- Lagarias, A.; Prastacos, P. Comparing the urban form of South European cities using fractal dimensions. Environ. Plan. B Urban Anal. City Sci. 2020, 47, 1149–1166. [Google Scholar] [CrossRef]
- Lin, J.; Wei, K.; Guan, Z. Exploring the connection between morphological characteristic of built-up areas and surface heat islands based on MSPA. Urban Clim. 2024, 53, 101764. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Tan, S.C.; Li, Y.P.; Wu, H.; Wu, R.J. Quantitative analysis of fractional vegetation cover in southern Sichuan urban agglomeration using optimal parameter geographic detector model, China. Ecol. Indic. 2024, 158, 111529. [Google Scholar] [CrossRef]
- Zhang, C.; Ping, X.; Fan, Q.; Li, C. Measurement of 2D and 3D Fractal Features of Urban Morphology from an Architectural View and Its Influencing Factors. Fractal Fract. 2024, 8, 138. [Google Scholar] [CrossRef]
- Muyibul, Z.; Tan, X.; Tuniyazi, J.; Du, R. Relationships between Tourism, Urbanization and Ecosystem Service Value in the Cities of Xinjiang in Northwest China. Sustainability 2023, 15, 4190. [Google Scholar] [CrossRef]
- Zhang, S.; Lei, J.; Zhang, X.; Tong, Y.; Lu, D.; Fan, L.; Duan, Z. Assessment and optimization of urban spatial resilience from the perspective of life circle: A case study of Urumqi, NW China. Sustain. Cities Soc. 2024, 109, 105527. [Google Scholar] [CrossRef]
- Wu, X.; Wang, G.; Yao, R.; Wang, L.; Yu, D.; Gui, X. Investigating Surface Urban Heat Islands in South America Based on MODIS Data from 2003–2016. Remote Sens. 2019, 11, 1212. [Google Scholar] [CrossRef]
- Mathew, A.; Khandelwal, S.; Kaul, N. Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature: Study of Chandigarh city, India. Sustain. Cities Soc. 2016, 26, 264–277. [Google Scholar] [CrossRef]
- Stabler, L.B.; Martin, C.A.; Brazel, A.J. Microclimates in a desert city were related to land use and vegetation index. Urban For. Urban Green. 2005, 3, 137–147. [Google Scholar] [CrossRef]
- Karimi, A.; Mohammad, P.; Gachkar, S.; Gachkar, D.; García-Martínez, A.; Moreno-Rangel, D.; Brown, R.D. Surface Urban Heat Island Assessment of a Cold Desert City: A Case Study over the Isfahan Metropolitan Area of Iran. Atmosphere 2021, 12, 1368. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Breon, F.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef]
- Wang, J.; Huang, B.; Fu, D.; Atkinson, P.M. Spatiotemporal Variation in Surface Urban Heat Island Intensity and Associated Determinants across Major Chinese Cities. Remote Sens. 2015, 7, 3670–3689. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, L.; Zang, S. Examining seasonal effect of urban heat island in a coastal city. PLoS ONE 2019, 14, e0217850. [Google Scholar] [CrossRef]
- Mathew, A.; Khandelwal, S.; Kaul, N. Investigating spatial and seasonal variations of urban heat island effect over Jaipur city and its relationship with vegetation, urbanization and elevation parameters. Sustain. Cities Soc. 2017, 35, 157–177. [Google Scholar] [CrossRef]
- Fujibe, F. Detection of urban warming in recent temperature trends in Japan. Int. J. Climatol. 2009, 29, 1811–1822. [Google Scholar] [CrossRef]
- Tan, M.; Li, X. Quantifying the effects of settlement size on urban heat islands in fairly uniform geographic areas. Habitat Int. 2015, 49, 100–106. [Google Scholar] [CrossRef]
- Cao, S.; Cai, Y.; Du, M.; Weng, Q.; Lu, L. Seasonal and diurnal surface urban heat islands in China: An investigation of driving factors with three-dimensional urban morphological parameters. GISci. Remote Sens. 2022, 59, 1121–1142. [Google Scholar] [CrossRef]
- Li, B.; Liu, Z.; Nan, Y.; Li, S.; Yang, Y. Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia. Sustainability 2018, 10, 2637. [Google Scholar] [CrossRef]
- Chen, A.-l.; Sun, R.-h.; Chen, L.-d. Applicability of traditional landscape metrics in evaluating urban heat island effect. Yingyong Shengtai Xuebao 2012, 23, 2077–2086. [Google Scholar]
- Chunling, Z.; Hua, Y.U.; Peng, G. Relationships between Landscapes Spatial Pattern and Land Surface Temperature. Remote Sens. Technol. Appl. 2008, 23, 378–384. [Google Scholar]
- Wang, Y.-b.; Zhao, Y.-h.; Han, L.; Ao, Y.; Cai, J. Coupling relationship of landscape pattern and urban heat island effect in Xi’an, China. Yingyong Shengtai Xuebao 2017, 28, 2621–2628. [Google Scholar] [CrossRef]
- Shen, Z.; Zeng, J.; Ren, L. The Spatiotemporal Coupling Relationship of Landscape Pattern and Thermal Environment in Xiamen, 2002–2017. Chin. Landsc. Archit. 2021, 37, 100–105. [Google Scholar]
- Chen, L.; Wang, X.; Cai, X.; Yang, C.; Lu, X. Seasonal Variations of Daytime Land Surface Temperature and Their Underlying Drivers over Wuhan, China. Remote Sens. 2021, 13, 323. [Google Scholar] [CrossRef]
- Liu, Y.; Luan, Q.; Quan, W.; Zhang, S. Research on Heat Environment of Beijing-Tianjin-Tangshan Urban Group Based on Multisource Satellite Data. Ecol. Environ. Sci. 2015, 24, 1150–1158. [Google Scholar]
- Cui, Y.; Xu, X.; Dong, J.; Qin, Y. Influence of Urbanization Factors on Surface Urban Heat Island Intensity: A Comparison of Countries at Different Developmental Phases. Sustainability 2016, 8, 706. [Google Scholar] [CrossRef]
- Cao, A.-L.; Zhang, H.; Zhang, Y.; Ma, W.-C. Decadal changes of air temperature in Shanghai in recent 50 years and its relation to urbanization. Chin. J. Geophys.-Chin. Ed. 2008, 51, 1663–1669. [Google Scholar]
- Li, Y.; Sun, Y.; Li, J.; Gao, C. Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities. Sustain. Cities Soc. 2020, 63, 102425. [Google Scholar] [CrossRef]
- Wen, Z.; Tian, D.; Zhu, Y. Research on Spatial and Temporal Patterns of Heat Island Variability and Influencing Factors in Urban Center Areas: A Case Study of Beijing’s Central Area. Buildings 2023, 13, 1887. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, Q.; Allam, M.; Hu, D.; Zhang, L.; Menenti, M. Environmental and anthropogenic drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China. Ecol. Indic. 2021, 128, 107845. [Google Scholar] [CrossRef]
- Peng, B.; Shi, Y.; Wang, H.; Wang, Y. The impacting mechanism and laws of function of urban heat islands effect: A case study of Shanghai. Acta Geogr. Sin. 2013, 68, 1461–1471. [Google Scholar]
- Assenova, I.; Vitanova, L.; Petrova-Antonova, D. Urban heat islands from multiple perspectives: Trends across disciplines and interrelationships. Urban Clim. 2024, 56, 102075. [Google Scholar] [CrossRef]
- Halder, B.; Karimi, A.; Mohammad, P.; Bandyopadhyay, J.; Brown, R.D.; Yaseen, Z.M. Investigating the relationship between land alteration and the urban heat island of Seville city using multi-temporal Landsat data. Theor. Appl. Clim. 2022, 150, 613–635. [Google Scholar] [CrossRef]
- Mahdavi Estalkhsari, B.; Mohammad, P.; Karimi, A. Land use and land cover change dynamics and modeling future urban growth using cellular automata model over isfahan metropolitan area of Iran. In Ecological Footprints of Climate Change: Adaptive Approaches and Sustainability; Springer: Cham, Switzerland, 2023; pp. 495–516. [Google Scholar]
- Karimi, A.; Mohammad, P.; García-Martínez, A.; Moreno-Rangel, D.; Gachkar, D.; Gachkar, S. New developments and future challenges in reducing and controlling heat island effect in urban areas. Environ. Dev. Sustain. 2023, 25, 10485–10531. [Google Scholar] [CrossRef]
- Turner, V.K.; Middel, A.; Vanos, J.K.K. Shade is an essential solution for hotter cities. Nature 2023, 619, 694–697. [Google Scholar] [CrossRef]
- Houchmand, L.J.; Martí, M.M.; Gassó-Domingo, S. Influence of PV panels on convective heat flux in different roofs in the Mediterranean: Effects on the urban heat island. Build. Environ. 2024, 266, 112097. [Google Scholar] [CrossRef]
- Mackey, C.W.; Lee, X.; Smith, R.B. Remotely sensing the cooling effects of city scale efforts to reduce urban heat island. Build. Environ. 2012, 49, 348–358. [Google Scholar] [CrossRef]
- Cheela, V.R.S.; John, M.; Biswas, W.; Sarker, P. Combating Urban Heat Island Effect—A Review of Reflective Pavements and Tree Shading Strategies. Buildings 2021, 11, 93. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Emmanuel, R.; Fernando, H.J.S. Urban heat islands in humid and arid climates: Role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Clim. Res. 2007, 34, 241–251. [Google Scholar] [CrossRef]
- Chakrabortty, R.; Pramanik, M.; Hasan, M.M.; Halder, B.; Pande, C.B.; Moharir, K.N.; Zhran, M. Mitigating Urban Heat Islands in the Global South: Data-driven Approach for Effective Cooling Strategies. Earth Syst. Environ. 2024, 1–28. [Google Scholar] [CrossRef]
- Sokulski, C.C.; Barros, M.V.; Salvador, R.; Broday, E.E.; de Francisco, A.C. Trends in Renewable Electricity Generation in the G20 Countries: An Analysis of the 1990–2020 Period. Sustainability 2022, 14, 2084. [Google Scholar] [CrossRef]
Data Type | Factors | Year | Spatial Resolution | Source |
---|---|---|---|---|
Land surface temperature (LST) | 2020 | 1 km | National Tibetan Plateau/Third Pole Environment Data Center (https://data.tpdc.ac.cn/ (accessed on 24 January 2023)) | |
Land use/land cover (LULC) | 2020 | 30 m | Resources and Environmental Science Data Center (https://www.resdc.cn/ (accessed on 24 January 2023)) | |
Natural geographic data | Precipitation | 2020 | 1 km | National Tibetan Plateau/Third Pole Environment Data Center (https://data.tpdc.ac.cn/ (accessed on 16 May 2023)) |
DEM | 2020 | 30 m | NASA (https://search.earthdata.nasa.gov/ (accessed on 16 May 2023)) | |
NDVI | 2020 | 1 km | ||
Socio-economic data | Population density | 2020 | - | China Urban Construction Statistical Yearbook 2020 |
GDP | 2020 | - | China City Statistical Yearbook 2021 | |
Urban green space rate | 2020 | - | China Urban Construction Statistical Yearbook 2020 |
Category | Variable | Description | Equation |
---|---|---|---|
Urban forms | Largest Patch Index (LPI) | Percent area of the largest patch of urban land in the total landscape area. | |
Landscape Shape Index (LSI) | LSI equals 1 when the landscape has the most regular shape; the value increases with the complexity of the landscape shape. | ||
Mean perimeter–area ratio (PARA_MN) | PARA_MN indicates the average perimeter-to-area ratio of urban patches, representing the regularity of urban patch shapes in the landscape. | ||
Percentage of Like Adjacencies (PLADJ) | PLADJ indicates the percentage of cell adjacencies involving urban patches that are similar. | ||
Patch Cohesion Index (COHESION) | COHESION measures the physical connectedness of urban land; it increases as the urban patch becomes more clumped or aggregated in its distribution. | ||
Aggregation Index (AI) | AI is used to determine the degree of compactness of the landscape. | ||
Urban fractal Dimension (DI) | DI is considered as a measure of compact-ness, i.e., compact cities have usually large values of DI. |
Annual Average SUHII (°C) | Annual Daytime Average SUHII (°C) | Annual Nighttime Average SUHII (°C) | |
---|---|---|---|
mean | 1.37 | 0.84 | 1.90 |
maximum | 2.86 | 3.30 | 3.90 |
minimum | −0.78 | −2.11 | 0.30 |
Category | Variable | N | Minimum | Maximum | Mean | STD |
---|---|---|---|---|---|---|
Urban Forms | LPI | 22 | 0.03 | 9.49 | 1.38 | 2.25 |
LSI | 22 | 2.38 | 8.55 | 4.00 | 1.57 | |
PARA_MN | 22 | 14.48 | 841.12 | 153.34 | 240.19 | |
PLADJ | 22 | 97.39 | 98.97 | 98.33 | 0.39 | |
COHESION | 22 | 98.93 | 99.87 | 99.50 | 0.21 | |
Natural Factors | AI | 22 | 97.75 | 99.25 | 98.79 | 0.34 |
DI | 22 | 1.20 | 1.77 | 1.55 | 0.13 | |
PRE | 22 | 25.72 | 301.00 | 144.11 | 79.79 | |
AL | 22 | 421.98 | 1376.21 | 750.13 | 290.45 | |
EL | 22 | −129.98 | 402.41 | 27.07 | 109.42 | |
NDVI | 22 | 0.07 | 0.29 | 0.20 | 0.06 | |
Human Factors | PD | 22 | 643.00 | 6355.00 | 3796.95 | 1247.49 |
GDP | 22 | 519,300.00 | 33,373,200.00 | 4,170,059.91 | 6,646,827.05 | |
UGSR | 22 | 30.72 | 44.95 | 36.57 | 3.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Mamitimin, Y.; Abulizi, A.; Huang, M.; Tao, T.; Ma, Y. Seasonal and Diurnal Characteristics and Drivers of Urban Heat Island Based on Optimal Parameters-Based Geo-Detector Model in Xinjiang, China. Atmosphere 2024, 15, 1377. https://doi.org/10.3390/atmos15111377
Chen H, Mamitimin Y, Abulizi A, Huang M, Tao T, Ma Y. Seasonal and Diurnal Characteristics and Drivers of Urban Heat Island Based on Optimal Parameters-Based Geo-Detector Model in Xinjiang, China. Atmosphere. 2024; 15(11):1377. https://doi.org/10.3390/atmos15111377
Chicago/Turabian StyleChen, Han, Yusuyunjiang Mamitimin, Abudukeyimu Abulizi, Meiling Huang, Tongtong Tao, and Yunfei Ma. 2024. "Seasonal and Diurnal Characteristics and Drivers of Urban Heat Island Based on Optimal Parameters-Based Geo-Detector Model in Xinjiang, China" Atmosphere 15, no. 11: 1377. https://doi.org/10.3390/atmos15111377
APA StyleChen, H., Mamitimin, Y., Abulizi, A., Huang, M., Tao, T., & Ma, Y. (2024). Seasonal and Diurnal Characteristics and Drivers of Urban Heat Island Based on Optimal Parameters-Based Geo-Detector Model in Xinjiang, China. Atmosphere, 15(11), 1377. https://doi.org/10.3390/atmos15111377