Spatial and Temporal Patterns of Trace Element Deposition in Urban Thessaloniki: A Syntrichia Moss Biomonitoring Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Moss Sampling
- Motorway (M01–M03 samples): These locations were selected to capture the impact of vehicular emissions, particularly HMs such as Pb, Cd, and Zn, along a major transportation artery [36]. The traffic density data for this motorway indicates high volumes of both passenger and commercial vehicles, making it a significant source of traffic-related air HM contamination in Thessaloniki;
- Industrial zone (M07–M09, M12 samples): This zone includes industries known to emit HMs such as Cr, Ni, and As [37]. These locations were chosen to evaluate the localized impact of industrial emissions on air quality;
- City center (M04–M06, M11, M14 samples): These locations represent areas with high population density and mixed land use, exposed to a combination of traffic emissions, commercial activities, and potentially domestic heating. They were selected to capture the overall urban background levels of HMs and assess the variability in HMs across the city center;
- Road adjacent to oil and fuel terminal (M10 sample): This location was chosen to investigate the potential impact of HMs associated with fuel storage and transport activities. The terminal is a potential source of localized air HM contamination due to the handling and transfer of fuel;
- Airport surroundings (M16–M17 samples): These locations were chosen to assess the contribution of aircraft emissions, specifically HMs, to air quality in the vicinity of the airport.
2.2. Sampling Methodology
- March (21 March 2024): Sampling near the end of winter was conducted to capture the effects of heating emissions, particularly from residential and commercial heating systems;
- May (19 May 2024): Sampling occurred in mid-spring when vehicle emissions were at their highest as temperatures started to rise. This period was crucial for estimating the impact of anthropogenic emissions on urban air quality;
- July (18 July 2024): Mid-summer sampling was carried out to observe the effects of higher temperatures, which intensified photochemical reactions. This period also reflected the impact of increased tourism and traffic emissions as the city experienced a surge in visitors.
2.3. Sample Preparation and Chemical Analysis
2.4. Data Analysis
- C sample is the concentration of the contaminant in the sample;
- C background is the concentration of the contaminant in the background, or it is the corresponding contamination level of samples from a clean site (uncontaminated or very slightly contaminated).
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effects of Time and Location on Heavy Metal Bioaccumulation in Syntrichia
3.2. Spatial and Temporal Trends of Each Heavy Metal
3.3. Monthly Variation Patterns
3.4. Assessment of Heavy Metal Contamination in Thessaloniki Using Contamination Factors
3.5. Potential HM Contamination Sources in Thessaloniki and Their Contribution to Heavy Metal Accumulation in Syntrichia
3.6. Multivariate Analysis of Heavy Metal Contamination Patterns
- Cluster 1: Encompassing locations L2, L4, L15, and L16, this is characterized by relatively low HM concentrations, potentially representing less polluted areas or background levels. Specifically, this cluster exhibits low concentrations of V, Al, and Co, consistent with minimal anthropogenic influence;
- Cluster 2: Encompassing locations L1 and L3, this is characterized by high Al levels, suggesting a combined influence of traffic and industrial activities;
- Cluster 3: primarily associated with location L14, this is distinguished by exceptionally high Ni and Cr levels, strongly indicating a unique and localized source;
- Cluster 4: encompassing locations L7, L8, L9, and L10, this is characterized by high As levels, suggesting the influence of nearby distinct sources, such as agricultural runoff or industrial discharge;
- Cluster 5: encompassing locations L5, L11, and L12, this is characterized by elevated levels of Sb, Cu, and Ba, suggesting potential influences from vehicular emissions and related industrial activities;
- Cluster 6: encompassing locations L6 and L13, this is distinguished by exceptionally high Zn and Cd levels, likely associated with intense traffic, industrial emissions, or waste disposal activities.
3.7. Comparison with Previous Studies of Heavy Metal Contamination in Thessaloniki and in Other Mediterranean Urban Areas
3.8. Comparative Effectiveness of Syntrichia Moss Versus Other Bioindicators in Urban HM Detection
4. Implications for Public Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Substance Priority List Resource Page | ATSDR. Available online: https://wwwn.cdc.gov/TSP/index.aspx (accessed on 12 July 2024).
- Rahman, Z.; Singh, V. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Qing, X.; Zong, Y.; Lu, S. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar] [CrossRef]
- Swain, C.K. Environmental pollution indices: A review on concentration of heavy metals in air, water, and soil near industrialization and urbanisation. Discov. Environ. 2024, 2, 5. [Google Scholar] [CrossRef]
- EUR–Lex. The European Green Deal. Available online: https://eur-lex.europa.eu/EN/legal-content/summary/european-green-deal.html (accessed on 25 October 2024).
- European Commission. Zero Pollution Action Plan. Available online: https://environment.ec.europa.eu/strategy/zero-pollution-action-plan_en (accessed on 25 October 2024).
- Harner, T.; Shoeib, M.; Diamond, M.; Stern, G.; Rosenberg, B. Using passive air samplers to assess urban–rural trends for persistent organic pollutants. Environ. Sci. Technol. 2004, 38, 4474–4483. [Google Scholar] [CrossRef]
- Yu, J.; Yang, R. Study on the Predictive Algorithm of Plant Restoration Under Heavy Metals. Sci. Program. 2021, 2021, 6193182. [Google Scholar] [CrossRef]
- Li, X.; Feng, L. Spatial distribution of hazardous elements in urban topsoils surrounding Xi’an industrial areas (NW, China): Controlling factors and contamination assessments. J. Hazard. Mater. 2010, 174, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Schröder, W.; Nickel, S. Spatial Structures of Heavy Metals and Nitrogen Accumulation in Moss Specimens Sampled between 1990 and 2015 throughout Germany. Environ. Sci. Eur. 2019, 31, 33. [Google Scholar] [CrossRef]
- Świsłowski, P.; Ziembik, Z.; Rajfur, M. Air Quality During New Year’s Eve: A Biomonitoring Study with Moss. Atmosphere 2021, 12, 975. [Google Scholar] [CrossRef]
- Chaligava, O.; Nikolaev, I.; Khetagurov, K.; Lavrinenko, Y.; Bazaev, A.; Frontasyeva, M.; Vergel, K.; Grozdov, D. First Results on Moss Biomonitoring of Trace Elements in the Central Part of Georgia, Caucasus. Atmosphere 2021, 12, 317. [Google Scholar] [CrossRef]
- Stafilov, T.; Šajn, R.; Barandovski, L.; Andonovska, K.B.; Malinovska, S. Moss Biomonitoring of Atmospheric Deposition Study of Minor and Trace Elements in Macedonia. Air Qual. Atmos. Health 2018, 11, 137–152. [Google Scholar] [CrossRef]
- Mahapatra, B.; Dhal, N.K.; Dash, A.; Panda, B.; Panigrahi, K.C.; Pradhan, A. Perspective of Mitigating Atmospheric Heavy Metal Pollution: Using Mosses as Biomonitoring and Indicator Organism. Environ. Sci. Pollut. Res. 2019, 26, 29620–29638. [Google Scholar] [CrossRef]
- Rajfur, M.; Świsłowski, P.; Nowainski, F.; Śmiechowicz, B. Mosses as Biomonitor of Air Pollution with Analytes Originating from Tobacco Smoke. Chem. Didact. Ecol. Metrol. 2018, 23, 127–136. [Google Scholar] [CrossRef]
- Baczewska–Dąbrowska, A.; Gworek, B.; Dmuchowski, W. The Use of Mosses in Biomonitoring of Air Pollution in the Terrestrial Environment: A Review. Environ. Prot. Nat. Resour. 2023, 34, 19–30. [Google Scholar] [CrossRef]
- Maxhuni, A.; Lazo, P.; Kane, S.; Qarri, F.; Marku, E.; Harmens, H. First Survey of Atmospheric Heavy Metal Deposition in Kosovo Using Moss Biomonitoring. Environ. Sci. Pollut. Res. Int. 2016, 23, 744–755. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe. Heavy Metals, Nitrogen and POPs in European Mosses: 2020 Survey—Monitoring Manual; ICP Vegetation Programme Coordination Centre: Bangor, UK; Dubna, Russia, 2020; pp. 1–26. [Google Scholar]
- Harmens, H.; Norris, D.A.; Steinnes, E.; Kubin, E.; Piispanen, J.; Alber, R.; Zechmeister, H.G. Mosses as Biomonitors of Atmospheric Heavy Metal Deposition: Spatial Patterns and Temporal Trends in Europe. Environ. Pollut. 2010, 158, 3144–3156. [Google Scholar] [CrossRef]
- Harmens, H.; Norris, D.A.; Cooper, D.M.; Mills, G.; Steinnes, E.; Kubin, E.; Zechmeister, H.G. Nitrogen Concentrations in Mosses Indicate the Spatial Distribution of Atmospheric Nitrogen Deposition in Europe. Environ. Pollut. 2011, 159, 2852–2860. [Google Scholar] [CrossRef]
- Betsou, C.; Tsakiri, E.; Kazakis, N.; Vasilev, A.; Frontasyeva, M.; Ioannidou, A. Atmospheric Deposition of Trace Elements in Greece Using Moss Hypnum cupressiforme Hedw. as Biomonitors. J. Radioanal. Nucl. Chem. 2019, 320, 597–608. [Google Scholar] [CrossRef]
- Tsikritzis, L.I.; Ganatsios, S.S.; Duliu, O.G.; Sawidis, T.D. Heavy Metals Distribution in Some Lichens, Mosses, and Trees in the Vicinity of Lignite Power Plants from West Macedonia, Greece. J. Trace Microprobe Tech. 2002, 20, 395–413. [Google Scholar] [CrossRef]
- Tsakovski, S.; Simeonov, V.; Sawidis, T.; Zachariadis, G.; Stratis, J. Chemometrical Classification of Biomonitoring Analytical Data for Heavy Metals. Part II. Mosses as Bioindicators. Toxicol. Environ. Chem. 1999, 69, 287–294. [Google Scholar] [CrossRef]
- Yurukova, L.; Tsakiri, E.; Çayir, A. Cross-Border Response of Moss, Hypnum cupressiforme Hedw., to Atmospheric Deposition in Southern Bulgaria and Northeastern Greece. Bull. Environ. Contam. Toxicol. 2009, 83, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Saitanis, C.J.; Frontasyeva, M.V.; Steinnes, E.; Palmer, M.W.; Ostrovnaya, T.M.; Gundorina, S.F. Spatiotemporal Distribution of Airborne Elements Monitored with the Moss Bags Technique in the Greater Thriasion Plain, Attica, Greece. Environ. Monit. Assess. 2013, 185, 955–968. [Google Scholar] [CrossRef]
- Frontasyeva, M.; Harmens, H.; Uzhinskiy, A.; Chaligava, O. Mosses as Biomonitors of Air Pollution: 2015/2016 Survey on Heavy Metals, Nitrogen, and POPs in Europe and Beyond; Joint Institute for Nuclear Research: Dubna, Russia, 2020; Available online: http://www1.jinr.ru/Books/REPORT-Frontasyeva_sait.pdf (accessed on 25 October 2024).
- Betsou, C.; Diapouli, E.; Tsakiri, E.; Papadopoulou, L.; Frontasyeva, M.; Eleftheriadis, K.; Ioannidou, A. First–Time Source Apportionment Analysis of Deposampled Particulate Matter from a Moss Biomonitoring Study in Northern Greece. Atmosphere 2021, 12, 208. [Google Scholar] [CrossRef]
- Urošević, M.A.; Lazo, P.; Stafilov, T.; Nečemer, M.; Andonovska, K.B.; Balabanova, B.; Hristozova, G.; Papagiannis, S.; Stihi, C.; Suljkanović, M.; et al. Active Biomonitoring of Potentially Toxic Elements in Urban Air by Two Distinct Moss Species and Two Analytical Techniques: A Pan–Southeastern European Study. Air Qual. Atmos. Health 2023, 16, 595–612. [Google Scholar] [CrossRef]
- Rajandu, E.; Kaljuvee, K.L.; Kulp, M.; Kaasik, M.; Elvisto, T.; Küttim, M. Syntrichia ruralis as a suitable bioindicator for urban areas—The case study of Tallinn city. Folia Cryptogam. Estonica 2024, 61, 25–34. [Google Scholar] [CrossRef]
- Faburé, J.; Plaisance, H.; Cazier, F.; Delbende, A.; Cuny, D.; Van Haluwyn, C. Potential use of Syntrichia ruralis for monitoring atmospheric BTEX. Int. J. Environ. Health 2010, 4, 201–215. [Google Scholar] [CrossRef]
- Li, X.; Bai, W.; Yang, Q.; Yin, B.; Zhang, Z.; Zhao, B.; Kuang, T.; Zhang, Y.; Zhang, D. The extremotolerant desert moss Syntrichia caninervis is a promising pioneer plant for colonizing extraterrestrial environments. The Innovation 2024, 5, 100657. [Google Scholar] [CrossRef]
- Silva, A.T.; Gao, B.; Fisher, K.M.; Mishler, B.D.; Ekwealor, J.T.B.; Stark, L.R.; Li, X.; Zhang, D.; Bowker, M.A.; Brinda, J.C.; et al. To dry perchance to live: Insights from the genome of the desiccation–tolerant biocrust moss Syntrichia caninervis. Plant J. 2021, 105, 1339–1356. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, X.; Yin, B.; Downing, A. Sensitivity of the xerophytic moss Syntrichia caninervis to prolonged simulated nitrogen deposition. Ann. Bot. 2016, 117, 1153–1161. [Google Scholar] [CrossRef]
- Zhang, X.; Ekwealor, J.T.B.; Mishler, B.D.; Silva, A.T.; Yu, L.; Jones, A.K.; Nelson, A.D.L.; Oliver, M.J. Syntrichia ruralis: Emerging model moss genome reveals a conserved and previously unknown regulator of desiccation in flowering plants. New Phytol. 2024, 243, 981–996. [Google Scholar] [CrossRef]
- Samara, C.; Kouimtzis, T.; Tsitouridou, R.; Kanias, G.; Simeonov, V. Chemical Mass Balance Source Apportionment of PM10 in an Industrialized Urban Area of Northern Greece. Atmos. Environ. 2003, 37, 41–54. [Google Scholar] [CrossRef]
- Moussiopoulos, N.; Vlachokostas, C.; Tsilingiridis, G.; Douros, I.; Hourdakis, E.; Naneris, C.; Sidiropoulos, C. Air Quality Status in Greater Thessaloniki Area and the Emission Reductions Needed for Attaining the EU Air Quality Legislation. Sci. Total Environ. 2009, 407, 1268–1285. [Google Scholar] [CrossRef]
- Kassomenos, P.A.; Kelessis, A.; Paschalidou, A.K.; Petrakakis, M. Identification of Sources and Processes Affecting Particulate Pollution in Thessaloniki, Greece. Atmos. Environ. 2011, 45, 7293–7300. [Google Scholar] [CrossRef]
- Vuǩović, G.; Urošević, M.A.; Goryainova, Z.; Pergal, M.; Škrivanj, S.; Samson, R.; Popović, A. Active Moss Biomonitoring for Extensive Screening of Urban Air Pollution: Magnetic and Chemical Analyses. Sci. Total Environ. 2015, 527–528, 200–210. [Google Scholar] [CrossRef]
- Natali, M.; Zanella, A.; Ranković, A.; Banas, D.; Cantaluppi, C.; Abbadie, L.; Lata, J.C. Assessment of Trace Metal Air Pollution in Paris Using Slurry–TXRF Analysis on Cemetery Mosses. Environ. Sci. Pollut. Res. 2016, 23, 23496–23510. [Google Scholar] [CrossRef]
- Donovan, G.H.; Jovan, S.; Gatziolis, D.; Burstyn, I.; Michael, Y.; Amacher, M.; Monleon, V. Using an Epiphytic Moss to Identify Previously Unknown Sources of Atmospheric Cadmium Pollution. Sci. Total Environ. 2016, 559, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Nickel, S.; Schröder, W. Correlating Elements Content in Mosses Collected in 2015 across Germany with Spatially Associated Characteristics of Sampling Samples and Their Surroundings. Environ. Sci. Eur. 2019, 31, 80. [Google Scholar] [CrossRef]
- Wells, J.M.; Brown, D.H. Ionic Control of Intracellular and Extracellular Cd Uptake by the Moss Rhytidiadelphus squarrosus (Hedw.). Warnst. New Phytol. 1990, 116, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.A.; Aboal, J.R.; Real, C.; Carballeira, A. A New Moss Biomonitoring Method for Detecting Sources of Small–Scale Pollution. Atmos. Environ. 2007, 41, 2098–2110. [Google Scholar] [CrossRef]
- Aboal, J.R.; Fernández, J.A.; Boquete, T.; Carballeira, A. Is It Possible to Estimate Atmospheric Deposition of Heavy Metals by Analysis of Terrestrial Mosses? Sci. Total Environ. 2010, 408, 6291–6297. [Google Scholar] [CrossRef]
- Aboal, J.R.; Pérez–Llamazares, A.; Carballeira, A.; Giordano, S.; Fernández, J.A. Should Moss Samples Used as Biomonitors of Atmospheric Contamination Be Washed? Atmos. Environ. 2011, 45, 6837–6840. [Google Scholar] [CrossRef]
- ISO 17294–1:2024; Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP–MS)—Part 1: General Requirements, 2nd ed. 2024, pp. 1–32. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:17294:-1:ed-2:v1 (accessed on 9 November 2024).
- ISO 17294-2:2023; Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes, 3rd ed. 2023. Available online: https://www.iso.org/standard/82245.html (accessed on 9 November 2024).
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control. A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Fernández, J.A.; Carballeira, A. Evaluation of Contamination by Different Elements in Terrestrial Mosses. Arch. Environ. Contam. Toxicol. 2001, 40, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Shakya, K.; Chettri, M.; Sawidis, T. Use of Mosses for the Survey of Heavy Metal Deposition in Ambient Air of the Kathmandu Valley Applying Active Monitoring Technique. Ecoprint 2014, 19, 17–29. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, R.; Fang, Y. Source and Spatial Distribution of Airborne Heavy Metal Deposition Studied Using Mosses as Biomonitors in Yancheng, China. Environ. Sci. Pollut. Res. 2021, 28, 30758–30773. [Google Scholar] [CrossRef]
- Yan, G.; Mao, L.; Jiang, B.; Chen, X.; Gao, Y.; Chen, C.; Chen, L. The Source Apportionment, Pollution Characteristic and Mobility of Sb in Roadside Soils Affected by Traffic and Industrial Activities. J. Hazard. Mater. 2019, 384, 121352. [Google Scholar] [CrossRef]
- Periferakis, A.; Caruntu, A.; Periferakis, A.T.; Scheau, A.E.; Badarau, I.A.; Caruntu, C.; Scheau, C. Availability, Toxicology and Medical Significance of Antimony. Int. J. Environ. Res. Public Health 2022, 19, 4669. [Google Scholar] [CrossRef]
- Patel, K.S.; Pandey, P.K.; Martin-Ramos, P.; Corns, W.T.; Varol, S.; Bhattacharya, P.; Zhu, Y. A Review on Arsenic in the Environment: Contamination, Mobility, Sources, and Exposure. RSC Adv. 2023, 13, 8803–8821. [Google Scholar] [CrossRef]
- Dousova, B.; Lhotka, M.; Buzek, F.; Cejkova, B.; Jackova, I.; Bednar, V.; Hajek, P. Environmental Interaction of Antimony and Arsenic Near Busy Traffic Nodes. Sci. Total Environ. 2020, 702, 134642. [Google Scholar] [CrossRef]
- Sawidis, T.; Breuste, J.; Mitrovic, M.; Pavlovic, P.; Tsigaridas, K. Trees as Bioindicators of Heavy Metal Pollution in Three European Cities. Environ. Pollut. 2011, 159, 3560–3570. [Google Scholar] [CrossRef]
- Basbas, S.; Nikolaou, K.; Toskas, G. Relative Contribution of Various Diesel Vehicle Classes to the Thessaloniki Urban Air Pollution. Water Air Soil Pollut. Focus 2004, 4, 55–63. [Google Scholar] [CrossRef]
- Nriagu, J.O. The Rise and Fall of Leaded Gasoline. Sci. Total. Environ. 1990, 92, 13–28. [Google Scholar] [CrossRef]
- Shotyk, W.; Weiss, D.; Appleby, P.G.; Cheburkin, A.K.; Frei, R.; Gloor, M.; Kempter, H. History of Atmospheric Lead Deposition Since 12,370 14C yr BP from a Peat Bog, Jura Mountains, Switzerland. Science 1998, 281, 1635–1640. [Google Scholar] [CrossRef] [PubMed]
- Poudel, K.; Ikeda, A.; Fukunaga, H.; Brune, D.; Marie-Noel, O.D.; Lesley, J.; Gorman, J.; Laborde, A.; Kishi, R. How Does Formal and Informal Industry Contribute to Lead Exposure? A Narrative Review from Vietnam, Uruguay, and Malaysia. Rev. Environ. Health 2024, 39, 371–388. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, G.; Mackenzie, A.; Cook, G.; Pulford, I.; Duncan, H.; Scott, E. Spatial and Temporal Variations in Pb Concentrations and Isotopic Composition in Road Dust, Farmland Soil and Vegetation in Proximity to Roads Since Cessation of Use of Leaded Petrol in the UK. Sci. Total Environ. 2011, 409, 5010–5019. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tan, M.; Li, Y.; Zhang, Y.; Lu, W.; Tong, Y.; Zhang, G.; Li, Y. A Lead Isotope Record of Shanghai Atmospheric Lead Emissions in Total Suspended Particles During the Period of Phasing Out of Leaded Gasoline. Atmos. Environ. 2005, 39, 1245–1253. [Google Scholar] [CrossRef]
- Chrastný, V.; Šillerová, H.; Vítková, M.; Francová, A.; Jehlička, J.; Kocourková, J.; Aspholm, P.; Nilsson, L.; Berglen, T.; Jensen, H.; et al. Unleaded Gasoline as a Significant Source of Pb Emissions in the Subarctic. Chemosphere 2018, 193, 230–236. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; O’Connor, D.; Shen, Z.; Shi, P.; Ok, Y.; Tsang, D.; Wen, Y.; Luo, M. Lead Contamination in Chinese Surface Soils: Source Identification, Spatial–Temporal Distribution and Associated Health Risks. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1386–1423. [Google Scholar] [CrossRef]
- Raj, K.; Das, A.P. Lead Pollution: Impact on Environment and Human Health and Approach for a Sustainable Solution. Environ. Chem. Ecotoxicol. 2023, 5, 79–85. [Google Scholar] [CrossRef]
- Nag, R.; Cummins, E. Human Health Risk Assessment of Lead (Pb) Through the Environmental–Food Pathway. Sci. Total Environ. 2022, 810, 151168. [Google Scholar] [CrossRef]
- Mielke, H.W.; Gonzales, C.R.; Powell, E.T.; Egendorf, S.P. Lead in Air, Soil, and Blood: Pb Poisoning in a Changing World. Int. J. Environ. Res. Public Health 2022, 19, 9500. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, N.J.; Dong, S.; Packman, H.; Little, S.H.; Gonzalez, R.O.; Najorka, J.; Sun, Y.; Weiss, D.J. A Global Assessment of Copper, Zinc, and Lead Isotopes in Mineral Dust Sources and Aerosols. Front. Earth Sci. 2020, 8, 167. [Google Scholar] [CrossRef]
- Watt, J.; Burke, I.; Edwards, R.; Malcolm, H.; Mayes, W.; Olszewska, J.; Pan, G.; Graham, M.; Heal, K.; Rose, N.; et al. Vanadium: A Re–Emerging Environmental Hazard. Environ. Sci. Technol. 2018, 52, 11973–11974. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, B.; Jiang, B.; Li, Q.; Hu, X.; Xing, Y. Emission Inventory Development for Spatiotemporal Release of Vanadium from Anthropogenic Sources in China. EGUsphere 2024. [Google Scholar] [CrossRef]
- Imtiaz, M.; Rizwan, M.; Xiong, S.; Li, H.; Ashraf, M.; Shahzad, S.; Shahzad, M.; Rizwan, M.; Tu, S. Vanadium, recent advancements and research prospects: A review. Environ. Int. 2015, 80, 79–88. [Google Scholar] [CrossRef]
- Strzelecka, M.; Trojanowska, M. Evaluation of Traffic-Related Heavy Metals Emissions Using Noise Barrier Road Dust Analysis. Pol. J. Environ. Stud. 2013, 22, 561–567. [Google Scholar]
- Bourliva, A.; Kantiranis, N.; Papadopoulou, L.; Aidona, E.; Christophoridis, C.; Kollias, P.; Evgenakis, M.; Fytianos, K. Seasonal and spatial variations of magnetic susceptibility and potentially toxic elements (PTEs) in road dusts of Thessaloniki city, Greece. Sci. Total Environ. 2018, 639, 417–427. [Google Scholar] [CrossRef]
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2008, 26, 339–362. [Google Scholar] [CrossRef] [PubMed]
- Baldantoni, D.; Nicola, F.D.; Alfani, A. Air biomonitoring of heavy metals and polycyclic aromatic hydrocarbons near a cement plant. Atmos. Pollut. Res. 2014, 5, 262–269. [Google Scholar] [CrossRef]
- Gallego–Cartagena, E.; Morillas, H.; Carrero, J.A.; Madariaga, J.; Maguregui, M. Naturally growing grimmiaceae family mosses as passive biomonitors of heavy metals pollution in urban-industrial atmospheres from the Bilbao Metropolitan area. Chemosphere 2021, 263, 128190. [Google Scholar] [CrossRef]
- Ferreira, A.J.D.; Soares, D.; Serrano, L.M.V.; Walsh, R.P.D.; Dias-Ferreira, C.; Ferreira, C.S.S. Roads as sources of heavy metals in urban areas: The Covões catchment experiment, Coimbra, Portugal. J. Soils Sediments 2016, 16, 2622–2639. [Google Scholar] [CrossRef]
- Aricak, B.; Cetin, M.; Erdem, R.; Sevik, H.; Cometen, H. The Usability of Scotch Pine (Pinus sylvestris) as a Biomonitor for Traffic–Originated Heavy Metal Concentrations in Turkey. Pol. J. Environ. Stud. 2020, 29, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Izquieta-Rojano, S.; Elustondo, D.; Ederra, A.; Lasheras, E.; Santamaría, C.; Santamaría, J.M. Pleurochaete squarrosa (Brid.) Lindb. as an alternative moss species for biomonitoring surveys of heavy metal, nitrogen deposition, and δ15N signatures in a Mediterranean area. Ecol. Indic. 2016, 60, 1221–1228. [Google Scholar] [CrossRef]
- Garty, J. Biomonitoring Atmospheric Heavy Metals with Lichens: Theory and Application. Crit. Rev. Plant Sci. 2001, 20, 309–371. [Google Scholar] [CrossRef]
- Aksoy, A.; Ozturk, M. Nerium oleander L. as a biomonitor of lead and other heavy metal pollution in Mediterranean environments. Sci. Total Environ. 1997, 205, 145–150. [Google Scholar] [CrossRef]
- Quiroz, W.; De Gregori, I.; Basilio, P.; Bravo, M.; Pinto, M.; Lobos, M.G. Heavy Weight Vehicle Traffic and Its Relationship with Antimony Content in Human Blood. J. Environ. Monit. 2009, 11, 1051–1055. [Google Scholar] [CrossRef]
- Pragg, C.; Mohammed, F.K. Distribution and health risk assessment of heavy metals in road dust from an industrial estate in Trinidad, West Indies. Int. J. Environ. Health Res. 2019, 30, 336–343. [Google Scholar] [CrossRef]
- Callender, E.; Rice, K. The Urban Environmental Gradient: Anthropogenic Influences on the Spatial and Temporal Distributions of Lead and Zinc in Sediments. Environ. Sci. Technol. 2000, 34, 232–238. [Google Scholar] [CrossRef]
- Costa, M.; Klein, C.B. Toxicity and Carcinogenicity of Chromium Compounds in Humans. Crit. Rev. Toxicol. 2006, 36, 155–163. [Google Scholar] [CrossRef]
- Cheng, H.; Zhou, T.; Li, Q.; Lu, L.; Lin, C. Anthropogenic Chromium Emissions in China from 1990 to 2009. PLoS ONE 2014, 9, e87753. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, S.; Parakh, S.; Tong, Y. Health Hazards of Hexavalent Chromium (Cr (VI)) and Its Microbial Reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef]
- Kalidhasan, S.; Kumar, A.; Rajesh, V.; Rajesh, N. The Journey Traversed in the Remediation of Hexavalent Chromium and the Road Ahead Toward Greener Alternatives—A Perspective. Coord. Chem. Rev. 2016, 317, 157–166. [Google Scholar] [CrossRef]
- Nasirzadeh, N.; Mohammadian, Y.; Dehgan, G. Health Risk Assessment of Occupational Exposure to Hexavalent Chromium in Iranian Workplaces: A Meta–Analysis Study. Biol. Trace Elem. Res. 2021, 200, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Zhang, J.; Yi, P.; Zhu, G.; Hao, W.; Ji, W.; Tian, H.; Wang, Y. Exploring the emission characteristics and reduction potential of air pollutants from the Chinese aluminum industry: 2005–2025. Earth’s Future 2020, 8, e2019EF001440. [Google Scholar] [CrossRef]
- Olivati, F.; Cury, J. Fluoride Emission by an Aluminum Industry. Environ. Prot. Pollut. 2020, 5, 1–4. [Google Scholar] [CrossRef]
- Ding, N.; Gao, F.; Wang, Z.; Yang, J. Life Cycle Energy and Greenhouse Gas Emissions of Automobiles Using Aluminum in China. J. Ind. Ecol. 2016, 20, 818–827. [Google Scholar] [CrossRef]
- Bertram, M.; Buxmann, K.; Furrer, P. Analysis of Greenhouse Gas Emissions Related to Aluminium Transport Applications. Int. J. Life Cycle Assess. 2009, 14, 62–69. [Google Scholar] [CrossRef]
- Azhagurajan, A.; Nagaraj, P. An Experimental Analysis of Coal Aluminium Mixture in Coal Fired Furnace. J. Therm. Anal. Calorim. 2009, 98, 253–259. [Google Scholar] [CrossRef]
- Talebi, S.M.; Abedi, M. Determination of Arsenic in Air Particulates and Diesel Exhaust Particulates by Spectrophotometry. J. Environ. Sci. (China) 2005, 17, 156–158. [Google Scholar]
- Kravchenko, J.; Darrah, T.H.; Miller, R.K.; Lyerly, H.K.; Vengosh, A. A Review of the Health Impacts of Barium from Natural and Anthropogenic Exposure. Environ. Geochem. Health 2014, 36, 797–814. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xu, X.; Han, J.; Zhu, J.M.; Li, S.; Liang, L.; Wu, P.; Wu, Q.; Qiu, G. Heavy Metal(loid)s in Agricultural Soils in the World’s Largest Barium–Mining Area: Pollution Characteristics, Source Apportionment, and Health Risks Using PMF Model and Cd Isotopes. Process Saf. Environ. Prot. 2022, 166, 669–681. [Google Scholar] [CrossRef]
- Moghtaderi, T.; Alamdar, R.; Rodríguez–Seijo, A.; Naghibi, S.; Kumar, V. Ecological Risk Assessment and Source Apportionment of Heavy Metal Contamination in Urban Soils in Shiraz, Southwest Iran. Arab. J. Geosci. 2020, 13, 649. [Google Scholar] [CrossRef]
- Pacyna, J.M.; Pacyna, E.G. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 2001, 9, 269–298. [Google Scholar] [CrossRef]
- Pacyna, E.G.; Pacyna, J.M.; Sundseth, K.; Munthe, J.; Kindbom, K.; Wilson, S.; Steenhuisen, F.; Maxson, P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 2010, 44, 2487–2499. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [PubMed]
- Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A Comprehensive Review on the Sources, Essentiality and Toxicological Profile of Nickel. RSC Adv. 2022, 12, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Heavy Metals in Soils: Trace Elements and Metalloids in Soil; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Sereni, L.; Guenet, B.; Lamy, I. Does Copper Contamination Affect Soil CO2 Emissions? A Literature Review. Front. Environ. Sci. 2021, 9, 585677. [Google Scholar] [CrossRef]
- Manzoor, J.; Sharma, M.; Wani, K.A. Heavy metals in vegetables and their impact on the nutrient quality of vegetables: A review. J. Plant Nutr. 2018, 41, 1744–1763. [Google Scholar] [CrossRef]
- Evagelopoulos, V.; Begou, P.; Kassomenos, P.; Zoras, S. Investigation of the Particulate Air Pollution and the Ratio of PM2.5 to PM10 Concentrations in the Atmosphere over the Lignite Mining and Lignite-Fired Power Plants Region of Western Macedonia, Greece. IOP Conf. Ser. Earth Environ. Sci. 2022, 1123, 012077. [Google Scholar] [CrossRef]
- Tsikritzis, L. Investigation of the Fly Ash Heavy Metal Pollution of Plants in the Basin of the West Macedonia Lignite Center (Greece). Adv. Air Pollut. 2003, 13, 473–482. [Google Scholar]
- Samara, C.; Argyropoulos, G.; Grigoratos, T.; Kouras, A.; Manoli, E.; Andreadou, S.; Pavloudakis, F.; Sahanidis, C. Chemical Characterization and Receptor Modeling of PM10 in the Surroundings of the Opencast Lignite Mines of Western Macedonia, Greece. Environ. Sci. Pollut. Res. 2018, 25, 12206–12221. [Google Scholar] [CrossRef]
- Vasileiou, E.; Papazotos, P.; Dimitrakopoulos, D.; Perraki, M. Hydrogeochemical Processes and Natural Background Levels of Chromium in an Ultramafic Environment: The Case Study of Vermio Mountain, Western Macedonia, Greece. Water 2021, 13, 2809. [Google Scholar] [CrossRef]
- Kazakis, N.; Kantiranis, N.; Kalaitzidou, K.; Kaprara, E.; Mitrakas, M.; Frei, R.; Vargemezis, G.; Vogiatzis, D. Environmentally Available Hexavalent Chromium in Soils and Sediments Impacted by Dispersed Fly Ash in Sarigkiol Basin (Northern Greece). Environmental Pollution 2018, 235, 632–641. [Google Scholar] [CrossRef]
- Vlachokostas, C.; Michailidou, A.V.; Athanasiadis, A.; Moussiopoulos, N. Synergies Between Environmental Pressures in the Urban Climate: Combined Air Quality and Noise Exposure Assessment in Thessaloniki, Greece. Glob. NEST J. 2013, 15, 209–217. [Google Scholar] [CrossRef]
- Vlachokostas, C.; Achillas, C.; Moussiopoulos, N.; Kalogeropoulos, K.; Sigalas, G.; Kalognomou, E.-A.; Banias, G. Health Effects and Social Costs of Particulate and Photochemical Urban Air Pollution: A Case Study for Thessaloniki, Greece. Air Qual. Atmos. Health 2012, 5, 325–334. [Google Scholar] [CrossRef]
- Pekey, B.; Bozkurt, Z.; Pekey, H.; Dogan, G.; Zararsiz, A.; Ozaslan, N.; Gullu, G.; Uysal, B. Indoor/Outdoor Concentrations and Elemental Composition of PM10/PM2.5 in Urban/Industrial Areas of Kocaeli, Turkey. Indoor Air 2010, 20, 112–125. [Google Scholar] [CrossRef]
- Saffari, A.; Daher, N.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.; Karagkiozidou, O.; Vlachokostas, C.; Moussiopoulos, N.; Shafer, M.M.; et al. Increased Biomass Burning Due to the Economic Crisis in Greece and Its Adverse Impact on Wintertime Air Quality in Thessaloniki. Environ. Sci. Technol. 2013, 47, 13313–13320. [Google Scholar] [CrossRef] [PubMed]
- Guagliardi, I.; Cicchella, D.; De Rosa, R.; Buttafuoco, G. Assessment of lead pollution in topsoils of a southern Italy area: Analysis of urban and peri-urban environment. J. Environ. Sci. 2015, 33, 179–187. [Google Scholar] [CrossRef]
- Civitillo, D.; Ayuso, R.A.; Lima, A.; Albanese, S.; Esposito, R.; Cannatelli, C.; De Vivo, B. Potentially harmful elements and lead isotopes distribution in a heavily anthropized suburban area: The Casoria case study (Italy). Environ. Earth Sci. 2016, 75, 1325. [Google Scholar] [CrossRef]
- Becagli, S.; Sferlazzo, D.M.; Pace, G.; di Sarra, A.; Bommarito, C.; Calzolai, G.; Ghedini, C.; Lucarelli, F.; Meloni, D.; Monteleone, F.; et al. Evidence for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: A possible large role of ships emissions in the Mediterranean. Atmos. Chem. Phys. 2012, 12, 3479–3492. [Google Scholar] [CrossRef]
- Kodak, G. The Role of International Maritime Traffic on PM10 Pollutant in the Strait of Istanbul (Bosphorus). Int. J. Environ. Geoinformatics. 2022, 9, 36–47. [Google Scholar] [CrossRef]
- Aslanidis, P.-S.C.; Golia, E.E. Urban Sustainability at Risk Due to Soil Pollution by Heavy Metals—Case Study: Volos, Greece. Land 2022, 11, 1016. [Google Scholar] [CrossRef]
- Sahsamanoglou, T.; Makrogiannis, I.; Meletis, H. An Estimation of the Total Atmospheric Pollution in the City of Thessaloniki Using Solar Energy Data. Sol. Energy 1991, 46, 145–148. [Google Scholar] [CrossRef]
- Dayan, U.; Ricaud, P.; Zbinden, R.; Dulac, F. Atmospheric pollution over the eastern Mediterranean during summer—A review. Atmos. Chem. Phys. 2017, 17, 13233–13263. [Google Scholar] [CrossRef]
- Parliari, D.; Giannaros, C.; Papadogiannaki, S.; Melas, D. Short-Term Effects of Air Pollution on Mortality in the Urban Area of Thessaloniki, Greece. Sustainability 2023, 15, 5305. [Google Scholar] [CrossRef]
- European Commission. Air Quality: Commission Decides to Refer Greece to the Court of Justice over Poor Air Quality. EC Press Release, 3 December 2020. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_20_2151 (accessed on 7 October 2024).
- Jiang, Y.; Fan, M.M.; Hu, R.; Zhao, J.; Wu, Y.P. Mosses Are Better than Leaves of Vascular Plants in Monitoring Atmospheric Heavy Metal Pollution in Urban Areas. Int. J. Environ. Res. Public Health 2018, 15, 1105. [Google Scholar] [CrossRef]
- Świsłowski, P.; Nowak, A.; Rajfur, M. Comparison of Exposure Techniques and Vitality Assessment of Mosses in Active Biomonitoring for Their Suitability in Assessing Heavy Metal Pollution in Atmospheric Aerosol. Environ. Toxicol. Chem. 2022, 41, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Tsiaras, S.; Samara, T. Selection of the most suitable tree species in urban areas based on their capability of capturing heavy metals: A forest policy approach. Int. J. Sustain. Agric. Manag. Inform. 2019, 5, 15–24. [Google Scholar] [CrossRef]
- Institute of Medicine. Environmental Medicine: Integrating a Missing Element into Medical Education; Pope, A.M., Rall, D.P., Eds.; The National Academies Press: Washington, DC, USA, 1995. [Google Scholar] [CrossRef]
- United Nations Environment Programme. An Assessment Report on Issues of Concern: Chemicals and Waste Issues Posing Risks to Human Health and the Environment; United Nations Environment Programme: Nairobi, Kenya, 2020; ISBN 978-92-807-3808-7. Available online: https://www.unenvironment.org/explore-topics/chemicals-waste (accessed on 9 November 2024).
- Nordberg, G.F.; Bernard, A.; Diamond, G.L.; Duffus, J.H.; Illing, P.; Nordberg, M.; Bergdahl, I.A.; Jin, T.; Skerfving, S. Risk Assessment of Effects of Cadmium on Human Health (IUPAC Technical Report). Pure Appl. Chem. 2018, 90, 755–808. [Google Scholar] [CrossRef]
- World Health Organization. Exposure to Cadmium: A Major Public Health Concern; WHO: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/WHO-CED-PHE-EPE-19-4-3 (accessed on 9 November 2024).
- Murthy, M.K.; Khandayataray, P.; Padhiary, S.; Samal, D. A Review on Chromium Health Hazards and Molecular Mechanism of Chromium Bioremediation. Rev. Environ. Health 2022, 38, 461–478. [Google Scholar] [CrossRef]
- Chen, B.C.; Luo, J.; Hendryx, M. Zinc Compound Air Releases from Toxics Release Inventory Facilities and Cardiovascular Disease Mortality Rates. Environ. Res. 2015, 142, 96–103. [Google Scholar] [CrossRef]
Code | Location | Sampling Samples | Latitude | Longitude | Altitude (m) | Substrate pH |
---|---|---|---|---|---|---|
M01 | L01 | Motorway Thessaloniki-Moudanion | 40.54780556 | 23.0035 | 86 | 8.06 |
M02 | L02 | Motorway Thessaloniki-Moudanion | 40.54780556 | 23.0035 | 86 | 8.06 |
M03 | L03 | Motorway Thessaloniki-Moudanion | 40.54780556 | 23.0035 | 86 | 8.06 |
M04 | L04 | Vassillisis Olgas Avenue | 40.5949945 | 22.9555267 | 54 | 8.02 |
M05 | L05 | Vassillisis Olgas Avenue | 40.5933651 | 22.9547728 | 64 | 7.70 |
M06 | L06 | Vassillisis Olgas Avenue | 40.5952257 | 22.9562866 | 82 | 7.59 |
M07 | L07 | Sindos Industrial Area | 40.6878863 | 22.8225288 | 48 | 8.01 |
M07a | L08 | Sindos Industrial Area | 40.690109 | 22.821627 | 48 | 8.12 |
M08 | L09 | Sindos Industrial Area (Aghialos) | 40.6981867 | 22.7862937 | 58 | 8.01 |
M09 | L10 | Nea Ionia (Thessaloniki) | 40.6885446 | 22.8536126 | 45 | 7.54 |
M10 | L11 | Nea Ionia (Monastiriou Road) | 40.6737908 | 22.879135 | 41 | 8.04 |
M11 | L12 | Politechniou (Thessaloniki) | 40.637556 | 22.934306 | −2 | 7.57 |
M12 | L13 | Sindos Industrial Area | 40.6774342 | 22.8129888 | 47 | 8.04 |
M14 | L14 | Monastiriou (Thessaloniki) | 40.6471499 | 22.9220723 | 0 | 7.65 |
M16 | L15 | Thessaloniki’s Airport Surrounding Area (Thermi-Thessaloniki) | 40.524278 | 22.998611 | 7 | 8.16 |
M17 | L16 | Thessaloniki’s Airport Surrounding Area (Thermi-Thessaloniki) | 40.52425 | 22.980528 | 56 | 8.14 |
1 | CF < 1 | No (no significant contamination) |
2 | 1 ≤ CF < 2 | Suspected (potential contamination) |
3 | 2 ≤ CF < 3.5 | Slight (minor contamination) |
4 | 3.5 ≤ CF < 8 | Moderate (noticeable contamination) |
5 | 8 ≤ CF < 27 | Severe (high level of contamination) |
6 | 27 ≤ CF | Extreme (very high level of contamination) |
Elements | Factors | Degrees of Freedom | Mean Squares | F-Statistics | p-Value | Model Adjusted R2 |
---|---|---|---|---|---|---|
Aluminum | Months | 2 | 1,498,825 | 1.88 | 0.155 ns | 85.4% |
Samples | 15 | 59,838,161 | 75.13 | 0.000 *** | ||
Antimony | Months | 2 | 0.40605 | 9.00 | 0.000 *** | 83.9% |
Samples | 15 | 2.99085 | 66.31 | 0.000 *** | ||
Arsenic | Months | 2 | 21.29 | 0.86 | 0.424 ns | 60.3% |
Samples | 15 | 502.15 | 20.35 | 0.000 *** | ||
Barium | Months | 2 | 487,771 | 5.99 | 0.003 *** | 56.1% |
Samples | 15 | 1,352,898 | 16.60 | 0.000 *** | ||
Cadmium | Months | 2 | 0.3054 | 1.76 | 0.175 ns | 92.1% |
Samples | 15 | 25.9878 | 150.02 | 0.000 *** | ||
Chromium | Months | 2 | 5756.2 | 13.88 | 0.000 *** | 78.8% |
Samples | 15 | 19,335.9 | 46.62 | 0.000 *** | ||
Cobalt | Months | 2 | 44.429 | 6.25 | 0.002 *** | 57.9% |
Samples | 15 | 126.357 | 17.79 | 0.000 *** | ||
Copper | Months | 2 | 409.7 | 1.39 | 0.253 ns | 84.3% |
Samples | 15 | 20,509.5 | 69.43 | 0.000 *** | ||
Lead | Months | 2 | 34,173 | 11.78 | 0.000 *** | 66.7% |
Samples | 15 | 72,657 | 25.05 | 0.000 *** | ||
Nickel | Months | 2 | 2049.75 | 21.13 | 0.000 *** | 84.5% |
Samples | 15 | 6545.31 | 67.47 | 0.000 *** | ||
Vanadium | Months | 2 | 91.804 | 14.83 | 0.000 *** | 81.6% |
Samples | 15 | 344.046 | 55.59 | 0.000 *** | ||
Zinc | Months | 2 | 705,126 | 1.75 | 0.177 ns | 75.2% |
Samples | 15 | 15,942,944 | 39.48 | 0.000 *** |
Sample/Location | Al | Sb | As | Ba | Cd | Cr | Co | Cu | Pb | Ni | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
M01/L01 | 10,544.0 | 0.18 | 7.08 | 78.8 | 0.17 | 37.5 | 5.52 | 25.2 | 13.8 | 32.4 | 23.1 | 71.2 |
M02/L02 | 3138.8 | 0.22 | 1.21 | 45.7 | 0.06 | 9.6 | 1.22 | 9.7 | 3.4 | 7.9 | 6.9 | 40.3 |
M03/L03 | 13,387.0 | 0.13 | 7.76 | 90.7 | 0.15 | 50.0 | 6.55 | 26.8 | 15.9 | 36.9 | 27.3 | 67.8 |
M04/L04 | 6500.0 | 0.69 | 4.84 | 82.7 | 0.31 | 51.1 | 4.30 | 52.7 | 49.7 | 39.5 | 21.4 | 587.6 |
M05/L05 | 8222.0 | 1.85 | 8.92 | 762.9 | 0.55 | 60.3 | 7.17 | 111.6 | 126.2 | 41.4 | 22.4 | 679.2 |
M06/L06 | 11,110.4 | 0.97 | 7.01 | 131.4 | 5.78 | 65.4 | 5.75 | 89.8 | 176.9 | 35.3 | 25.2 | 3927.4 |
M07/L07 | 8825.3 | 0.58 | 10.21 | 137.3 | 2.41 | 48.4 | 6.47 | 53.0 | 169.9 | 27.8 | 22.7 | 936.7 |
M7a/L08 | 7571.7 | 0.92 | 21.53 | 136.7 | 2.15 | 93.4 | 7.79 | 76.8 | 274.1 | 37.3 | 27.5 | 1151.1 |
M08/L09 | 8757.5 | 0.55 | 23.91 | 96.1 | 0.55 | 54.2 | 4.97 | 74.8 | 44.9 | 27.3 | 26.5 | 216.8 |
M09/L10 | 8681.8 | 0.49 | 12.42 | 585.5 | 0.72 | 80.4 | 6.09 | 102.3 | 96.1 | 38.4 | 26.2 | 471.7 |
M10/L11 | 8482.3 | 1.01 | 16.52 | 1258.1 | 0.81 | 144.8 | 7.27 | 146.7 | 154.4 | 67.9 | 26.4 | 729.0 |
M11/L12 | 7529.0 | 1.36 | 8.61 | 229.0 | 0.95 | 76.0 | 10.83 | 112.0 | 69.4 | 44.9 | 22.8 | 1781.8 |
M12/L13 | 9742.9 | 0.53 | 11.00 | 386.4 | 2.09 | 65.1 | 15.41 | 61.5 | 143.6 | 35.9 | 25.6 | 3122.0 |
M14/L14 | 7933.6 | 0.06 | 4.00 | 54.8 | 0.30 | 164.7 | 9.40 | 18.3 | 20.7 | 114.3 | 20.2 | 91.1 |
M16/L15 | 7305.3 | 0.19 | 4.50 | 61.8 | 0.17 | 27.2 | 3.87 | 25.2 | 8.8 | 27.8 | 18.7 | 65.2 |
M17/L16 | 7128.2 | 0.17 | 2.22 | 99.7 | 0.13 | 39.3 | 4.16 | 17.6 | 71.4 | 24.0 | 15.2 | 64.3 |
Mean | 8428.7 | 0.6 | 9.5 | 264.9 | 1.1 | 66.7 | 6.7 | 62.7 | 90.0 | 39.9 | 22.4 | 875.2 |
Median | 8352.2 | 0.5 | 8.2 | 115.6 | 0.5 | 57.3 | 6.3 | 57.2 | 70.4 | 36.4 | 23.0 | 529.6 |
SD | 2233.1 | 0.5 | 6.5 | 335.8 | 1.5 | 40.1 | 3.2 | 41.3 | 77.8 | 23.4 | 5.4 | 1152.6 |
SE | 558.3 | 0.1 | 1.6 | 83.9 | 0.4 | 10.0 | 0.8 | 10.3 | 19.5 | 5.8 | 1.3 | 288.2 |
RSD% | 25.7 | 78.3 | 66.1 | 122.8 | 131.8 | 58.3 | 47.1 | 63.8 | 83.8 | 56.6 | 23.1 | 127.5 |
Baseline concentrations of the elements in Samples derived from a controlled environment | ||||||||||||
BgV1 | 579.8 | 0.14 | 0.49 | 15.2 | 0.09 | 2.08 | 0.42 | 6.7 | 1.82 | 2.90 | 1.90 | 2.57 |
BgV2 | 530.6 | 0.14 | 0.46 | 15.84 | 0.08 | 2.37 | 0.39 | 7.2 | 1.7 | 2.71 | 1.88 | 2.68 |
BgV3 | 555.2 | 0.14 | 0.42 | 14.85 | 0.08 | 2.44 | 0.37 | 6.95 | 1.55 | 2.79 | 2.07 | 2.31 |
Mean | 555.20 | 0.14 | 0.46 | 15.30 | 0.08 | 2.30 | 0.39 | 6.95 | 1.69 | 2.80 | 1.95 | 2.52 |
SD | 20.09 | 0.00 | 0.03 | 0.41 | 0.00 | 0.16 | 0.02 | 0.20 | 0.11 | 0.08 | 0.09 | 0.16 |
SE | 14.20 | 0.00 | 0.02 | 0.29 | 0.00 | 0.11 | 0.01 | 0.14 | 0.08 | 0.06 | 0.06 | 0.11 |
RSD% | 4.4 | 0.00 | 7.7 | 3.3 | 6.9 | 8.3 | 6.4 | 3.6 | 8.0 | 3.4 | 5.4 | 7.5 |
Sample/Location | Al | Sb | As | Ba | Cd | Cr | Co | Cu | Pb | Ni | V | Zn | CF Scale | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M01/L01 | 19.0 | 1.3 | 15.5 | 5.2 | 2.1 | 16.6 | 13.4 | 3.6 | 8.2 | 11.6 | 11.9 | 27.9 | No | ||
M02/L02 | 5.7 | 1.6 | 2.7 | 3.0 | 0.7 | 4.3 | 3.0 | 1.4 | 2.0 | 2.8 | 3.5 | 15.8 | Suspected | ||
M03/L03 | 24.1 | 1.0 | 17.0 | 5.9 | 1.8 | 22.2 | 15.9 | 3.9 | 9.4 | 13.2 | 14.0 | 26.6 | Slight | ||
M04/L04 | 11.7 | 5.0 | 10.6 | 5.4 | 3.8 | 22.7 | 10.4 | 7.6 | 29.5 | 14.1 | 11.0 | 230.4 | Moderate | ||
M05/L05 | 14.8 | 13.2 | 19.6 | 49.9 | 6.6 | 26.7 | 17.4 | 16.1 | 74.8 | 14.8 | 11.5 | 266.4 | Severe | ||
M06/L06 | 20.0 | 7.0 | 15.4 | 8.6 | 69.7 | 29.0 | 13.9 | 13.0 | 104.9 | 12.6 | 12.9 | 1540.2 | Extreme | ||
M07/L07 | 15.9 | 4.2 | 22.4 | 9.0 | 29.0 | 21.4 | 15.7 | 7.7 | 100.7 | 9.9 | 11.7 | 367.3 | |||
M7a/L08 | 13.6 | 6.6 | 47.3 | 8.9 | 25.9 | 41.4 | 18.9 | 11.1 | 162.5 | 13.3 | 14.1 | 451.4 | |||
M08/L09 | 15.8 | 3.9 | 52.5 | 6.3 | 6.6 | 24.0 | 12.1 | 10.8 | 26.6 | 9.7 | 13.6 | 85.0 | |||
M09/L10 | 15.6 | 3.5 | 27.3 | 38.3 | 8.7 | 35.6 | 14.8 | 14.8 | 57.0 | 13.7 | 13.4 | 185.0 | |||
M10/L11 | 15.3 | 7.2 | 36.3 | 82.3 | 9.8 | 64.1 | 17.6 | 21.2 | 91.6 | 24.2 | 13.6 | 285.9 | |||
M11/L12 | 13.6 | 9.7 | 18.9 | 15.0 | 11.5 | 33.7 | 26.3 | 16.2 | 41.1 | 16.0 | 11.7 | 698.7 | |||
M12/L13 | 17.5 | 3.8 | 24.2 | 25.3 | 25.2 | 28.8 | 37.4 | 8.9 | 85.2 | 12.8 | 13.1 | 1224.3 | |||
M14/L14 | 14.3 | 0.4 | 8.8 | 3.6 | 3.6 | 73.0 | 22.8 | 2.6 | 12.3 | 40.8 | 10.4 | 35.7 | |||
M16/L15 | 13.2 | 1.4 | 9.9 | 4.0 | 2.0 | 12.1 | 9.4 | 3.6 | 5.2 | 9.9 | 9.6 | 25.6 | |||
M17/L16 | 12.8 | 1.2 | 4.9 | 6.5 | 1.5 | 17.4 | 10.1 | 2.6 | 42.4 | 8.6 | 7.8 | 25.2 | |||
Mean | 15.2 | 4.4 | 20.8 | 17.3 | 13.0 | 29.6 | 16.2 | 9.1 | 53.3 | 14.3 | 11.5 | 343.2 | |||
Median | 15.0 | 3.9 | 18.0 | 7.6 | 6.6 | 25.4 | 15.2 | 8.3 | 41.7 | 13.0 | 11.8 | 207.7 | |||
SD | 4.0 | 3.6 | 14.2 | 22.0 | 17.7 | 17.8 | 7.9 | 6.0 | 46.1 | 8.3 | 2.7 | 452.0 | |||
SE | 1.0 | 0.9 | 3.6 | 5.5 | 4.4 | 4.4 | 2.0 | 1.5 | 11.5 | 2.1 | 0.7 | 113.0 | |||
RSD% | 0.3 | 0.8 | 0.7 | 1.2 | 1.3 | 0.6 | 0.5 | 0.6 | 0.8 | 0.6 | 0.2 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sfetsas, T.; Ghoghoberidze, S.; Karnoutsos, P.; Tziakas, V.; Karagiovanidis, M.; Katsantonis, D. Spatial and Temporal Patterns of Trace Element Deposition in Urban Thessaloniki: A Syntrichia Moss Biomonitoring Study. Atmosphere 2024, 15, 1378. https://doi.org/10.3390/atmos15111378
Sfetsas T, Ghoghoberidze S, Karnoutsos P, Tziakas V, Karagiovanidis M, Katsantonis D. Spatial and Temporal Patterns of Trace Element Deposition in Urban Thessaloniki: A Syntrichia Moss Biomonitoring Study. Atmosphere. 2024; 15(11):1378. https://doi.org/10.3390/atmos15111378
Chicago/Turabian StyleSfetsas, Themistoklis, Sopio Ghoghoberidze, Panagiotis Karnoutsos, Vassilis Tziakas, Marios Karagiovanidis, and Dimitrios Katsantonis. 2024. "Spatial and Temporal Patterns of Trace Element Deposition in Urban Thessaloniki: A Syntrichia Moss Biomonitoring Study" Atmosphere 15, no. 11: 1378. https://doi.org/10.3390/atmos15111378
APA StyleSfetsas, T., Ghoghoberidze, S., Karnoutsos, P., Tziakas, V., Karagiovanidis, M., & Katsantonis, D. (2024). Spatial and Temporal Patterns of Trace Element Deposition in Urban Thessaloniki: A Syntrichia Moss Biomonitoring Study. Atmosphere, 15(11), 1378. https://doi.org/10.3390/atmos15111378