Assessment of Environmental Parameters in Natural Coastal Scenery and Compositional by Means of an Innovative Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Sampling Description
2.2. Palas Fidas 200S
2.3. Raman Spectroscopy
2.4. SEM-EDX
3. Results
3.1. Temporal and Spatial Analysis of Particulate Matter
3.2. Identification of the Chemical Composition
3.3. Composition Analysis of Particulate Matter
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tomasi, C.; Lupi, A. Primary and Secondary Sources of Atmospheric Aerosol. In Atmospheric Aerosols, 1st ed.; Tomasi, C., Fuzzi, S., Kokhanovsky, A., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 1–86. ISBN 978-3-527-33645-6. [Google Scholar]
- Jacobson, M. Atmospheric Pollution: History, Science, and Regulation. The Edinburgh Building, Cambridge CB2 8RU, UK—Published in the United States of America by Cambridge University Press; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Harrison, R.M.; Pio, C.A. Size-differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin. Atmos. Environ. (1967) 1983, 17, 1733–1738. [Google Scholar] [CrossRef]
- De Leeuw, G.; Andreas, E.L.; Anguelova, M.D.; Fairall, C.W.; Lewis, E.R.; O’Dowd, C.; Schulz, M.; Schwartz, S.E. Production flux of sea spray aerosol. Rev. Geophys. 2011, 49, 2010RG000349. [Google Scholar] [CrossRef]
- Cochran, R.E.; Ryder, O.S.; Grassian, V.H.; Prather, K.A. Sea Spray Aerosol: The Chemical Link between the Oceans, Atmosphere, and Climate. Acc. Chem. Res. 2017, 50, 599–604. [Google Scholar] [CrossRef]
- O’Dowd, C.D.; De Leeuw, G. Marine aerosol production: A review of the current knowledge. Phil. Trans. R. Soc. A. 2007, 365, 1753–1774. [Google Scholar] [CrossRef]
- Deike, L.; Reichl, B.G.; Paulot, F. A Mechanistic Sea Spray Generation Function Based on the Sea State and the Physics of Bubble Bursting. AGU Adv. 2022, 3, e2022AV000750. [Google Scholar] [CrossRef]
- Lafon, C.; Piazzola, J.; Forget, P.; Le Calve, O.; Despiau, S. Analysis of the Variations of the Whitecap Fraction as Measured in a Coastal Zone. Bound.-Layer Meteorol. 2004, 111, 339–360. [Google Scholar] [CrossRef]
- Stramska, M.; Petelski, T. Observations of oceanic whitecaps in the north polar waters of the Atlantic. J. Geophys. Res. 2003, 108, 2002JC001321. [Google Scholar] [CrossRef]
- Richter, D.H.; Dempsey, A.E.; Sullivan, P.P. Turbulent Transport of Spray Droplets in the Vicinity of Moving Surface Waves. J. Phys. Oceanogr. 2019, 49, 1789–1807. [Google Scholar] [CrossRef]
- Quinn, P.K.; Collins, D.B.; Grassian, V.H.; Prather, K.A.; Bates, T.S. Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol. Chem. Rev. 2015, 115, 4383–4399. [Google Scholar] [CrossRef]
- Quinn, P.K.; Bates, T.S.; Schulz, K.S.; Coffman, D.J.; Frossard, A.A.; Russell, L.M.; Keene, W.C.; Kieber, D.J. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nat. Geosci. 2014, 7, 228–232. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, S.-G.; Park, J.; Kim, S.; Lee, J.-H. Investigating the impact of relative humidity and air tightness on PM sedimentation and concentration reduction. Build. Environ. 2023, 241, 110270. [Google Scholar] [CrossRef]
- Kwon, H.-S.; Ryu, M.H.; Carlsten, C. Ultrafine particles: Unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 2020, 52, 318–328. [Google Scholar] [CrossRef]
- Molnár, A.; Imre, K.; Ferenczi, Z.; Kiss, G.; Gelencsér, A. Aerosol hygroscopicity: Hygroscopic growth proxy based on visibility for low-cost PM monitoring. Atmos. Res. 2020, 236, 104815. [Google Scholar] [CrossRef]
- Liang, Z.; Chu, Y.; Gen, M.; Chan, C.K. Single-particle Raman spectroscopy for studying physical and chemical processes of atmospheric particles. Atmos. Chem. Phys. 2022, 22, 3017–3044. [Google Scholar] [CrossRef]
- Doughty, D.C.; Hill, S.C. Raman spectra of atmospheric aerosol particles: Clusters and time-series for a 22.5 hr sampling period. J. Quant. Spectrosc. Radiat. Transf. 2020, 248, 106907. [Google Scholar] [CrossRef]
- Estefany, C.; Sun, Z.; Hong, Z.; Du, J. Raman spectroscopy for profiling physical and chemical properties of atmospheric aerosol particles: A review. Ecotoxicol. Environ. Saf. 2023, 249, 114405. [Google Scholar] [CrossRef]
- Andreae, M.O.; Charlson, R.J.; Bruynseels, F.; Storms, H.; Van Grieken, R.; Maenhaut, W. Internal Mixture of Sea Salt, Silicates, and Excess Sulfate in Marine Aerosols. Science 1986, 232, 1620–1623. [Google Scholar] [CrossRef]
- Morillas, H.; Maguregui, M.; García-Florentino, C.; Marcaida, I.; Madariaga, J.M. Study of particulate matter from Primary/Secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage. Sci. Total Environ. 2016, 550, 285–296. [Google Scholar] [CrossRef]
- Li, D.; Yue, W.; Gong, T.; Gao, P.; Zhang, T.; Luo, Y.; Wang, C. A comprehensive SERS, SEM and EDX study of individual atmospheric PM2.5 particles in Chengdu, China. Sci. Total Environ. 2023, 883, 163668. [Google Scholar] [CrossRef]
- Sobanska, S.; Falgayrac, G.; Rimetz-Planchon, J.; Perdrix, E.; Brémard, C.; Barbillat, J. Resolving the internal structure of individual atmospheric aerosol particle by the combination of Atomic Force Microscopy, ESEM–EDX, Raman and ToF–SIMS imaging. Microchem. J. 2014, 114, 89–98. [Google Scholar] [CrossRef]
- Godoi, R.H.M.; Potgieter-Vermaak, S.; De Hoog, J.; Kaegi, R.; Van Grieken, R. Substrate selection for optimum qualitative and quantitative single atmospheric particles analysis using nano-manipulation, sequential thin-window electron probe X-ray microanalysis and micro-Raman spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 375–388. [Google Scholar] [CrossRef]
- González, L.T.; Longoria-Rodríguez, F.E.; Sánchez-Domínguez, M.; Leyva-Porras, C.; Acuña-Askar, K.; Kharissov, B.I.; Arizpe-Zapata, A.; Alfaro-Barbosa, J.M. Seasonal variation and chemical composition of particulate matter: A study by XPS, ICP-AES and sequential microanalysis using Raman with SEM/EDS. J. Environ. Sci. 2018, 74, 32–49. [Google Scholar] [CrossRef]
- Stefaniak, E.A.; Buczynska, A.; Novakovic, V.; Kuduk, R.; Grieken, R.V. Determination of chemical composition of individual airborne particles by SEM/EDX and micro-Raman spectrometry: A review. J. Phys. Conf. Ser. 2009, 162, 012019. [Google Scholar] [CrossRef]
- González, L.T.; Pérez-Rodríguez, M.; Rodríguez, F.E.L.; Mancilla, Y.; Acuña-Askar, K.; Campos, A.; Peña González, L.A.; Silva Vidaurri, L.G.; Zapata, A.A.; Nucamendi, A.; et al. Insights from the combined bulk chemical and surface characterization of airborne PM10 on source contributions and health risk: The case of three Mexican cities. Air Qual. Atmos. Health 2023, 16, 1455–1477. [Google Scholar] [CrossRef]
- Longoria-Rodríguez, F.E.; González, L.T.; Mancilla, Y.; Acuña-Askar, K.; Arizpe-Zapata, J.A.; González, J.; Kharissova, O.V.; Mendoza, A. Sequential SEM-EDS, PLM, and MRS Microanalysis of Individual Atmospheric Particles: A Useful Tool for Assigning Emission Sources. Toxics 2021, 9, 37. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; De Gruyter: Berlin, Germany, 2015; pp. 1–30. ISBN 978-3-11-041704-3. [Google Scholar]
- Yadav, H.; Mehta, M.; Jain, S.; Singh, S.; Bhandari, S.; Nihalani, S. Trend Analysis for Different Types of Aerosols in Conjugation with Temperatures for the Indian Region During the Post-monsoon Season (1980–2019). Aerosol Sci. Eng. 2024, 8, 13–19. [Google Scholar] [CrossRef]
- Allen, H.M.; Draper, D.C.; Ayres, B.R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R.L.; Baumann, K.; Edgerton, E.; Knote, C.; et al. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study. Atmos. Chem. Phys. 2015, 15, 10669–10685. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, N.; Zhao, D.; Shang, J.; Zhu, T. Using Micro-Raman Spectroscopy to Investigate Chemical Composition, Mixing States, and Heterogeneous Reactions of Individual Atmospheric Particles. Environ. Sci. Technol. 2021, 55, 10243–10254. [Google Scholar] [CrossRef]
- Morillas, H.; Marcaida, I.; García-Florentino, C.; Maguregui, M.; Arana, G.; Madariaga, J.M. Micro-Raman and SEM-EDS analyses to evaluate the nature of salt clusters present in secondary marine aerosol. Sci. Total Environ. 2018, 615, 691–697. [Google Scholar] [CrossRef]
- Xu, P.; Xu, J.; He, M.; Song, L.; Chen, D.; Guo, G.; Dai, H. Morphology and chemical characteristics of micro- and Nano-particles in the haze in Beijing studied by XPS and TEM/EDX. Sci. Total Environ. 2016, 565, 827–832. [Google Scholar] [CrossRef]
- Schwan, J.; Ulrich, S.; Batori, V.; Ehrhardt, H.; Silva, S.R.P. Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 1996, 80, 440–447. [Google Scholar] [CrossRef]
- Chen, Y.; Shah, N.; Huggins, F.E.; Huffman, G.P.; Linak, W.P.; Miller, C.A. Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy. Fuel Process. Technol. 2004, 85, 743–761. [Google Scholar] [CrossRef]
- Patiño, D.; Pérez-Orozco, R.; Porteiro, J.; Lapuerta, M. Characterization of biomass PM emissions using thermophoretic sampling: Composition and morphological description of the carbonaceous residues. J. Aerosol Sci. 2019, 127, 49–62. [Google Scholar] [CrossRef]
- Wang, M.; Hu, T.; Wu, F.; Duan, J.; Song, Y.; Zhu, Y.; Xue, C.; Zhang, N.; Zhang, D. Characterization of PM2.5 Carbonaceous Particles with a High-Efficiency SEM: A Case Study at a Suburban Area of Xi’an. Aerosol Sci. Eng. 2021, 5, 70–80. [Google Scholar] [CrossRef]
- Guedes, A.; Ribeiro, H.; Fernández-González, M.; Aira, M.J.; Abreu, I. Pollen Raman spectra database: Application to the identification of airborne pollen. Talanta 2014, 119, 473–478. [Google Scholar] [CrossRef]
- Schulte, F.; Lingott, J.; Panne, U.; Kneipp, J. Chemical Characterization and Classification of Pollen. Anal. Chem. 2008, 80, 9551–9556. [Google Scholar] [CrossRef]
- Zimmermann, B. Characterization of Pollen by Vibrational Spectroscopy. Appl. Spectrosc. 2010, 64, 1364–1373. [Google Scholar] [CrossRef]
- Ahlrichs, R.; Ochsenfeld, C. Theoretical Treatment of Sodium Chloride Clusters. Ber. Bunsenges. Phys. Chem. 1992, 96, 1287–1294. [Google Scholar] [CrossRef]
- Mazza, T.; Barborini, E.; Piseri, P.; Milani, P.; Cattaneo, D.; Li Bassi, A.; Bottani, C.E.; Ducati, C. Raman spectroscopy characterization of TiO2 rutile nanocrystals. Phys. Rev. B 2007, 75, 045416. [Google Scholar] [CrossRef]
- Morillas, H.; Marcaida, I.; Maguregui, M.; Upasen, S.; Gallego-Cartagena, E.; Madariaga, J.M. Identification of metals and metalloids as hazardous elements in PM2.5 and PM10 collected in a coastal environment affected by diffuse contamination. J. Clean. Prod. 2019, 226, 369–378. [Google Scholar] [CrossRef]
- Curci, G.; Ferrero, L.; Tuccella, P.; Barnaba, F.; Angelini, F.; Bolzacchini, E.; Carbone, C.; Denier Van Der Gon, H.A.C.; Facchini, M.C.; Gobbi, G.P.; et al. How much is particulate matter near the ground influenced by upper-level processes within and above the PBL? A summertime case study in Milan (Italy) evidences the distinctive role of nitrate. Atmos. Chem. Phys. 2015, 15, 2629–2649. [Google Scholar] [CrossRef]
- Wu, L.; Eom, H.-J.; Yoo, H.; Gupta, D.; Cho, H.-R.; Fu, P.; Ro, C.-U. Chemical composition-dependent hygroscopic behavior of individual ambient aerosol particles collected at a coastal site. Atmos. Chem. Phys. 2023, 23, 12571–12588. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Fundamentals of Atmospheric Modeling, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005; ISBN 978-0-511-11115-0. [Google Scholar]
- Ansari, A. Prediction of multicomponent inorganic atmospheric aerosol behavior. Atmos. Environ. 1999, 33, 745–757. [Google Scholar] [CrossRef]
Chemical Compound | DRH (%) | rH(%) Average Value Measured | ||
---|---|---|---|---|
March | June | October | ||
NaNO3 | 74.5 | 72.65 | 72.00 | 77.06 |
NH4NO3 | 61.83 | 72.65 | 72.00 | 77.06 |
NaCl | 75.2 | 72.65 | 72.00 | 77.06 |
Na2SO4 | 84.2 | 72.65 | 72.00 | 77.06 |
(NH4)2SO4 | 79.97 | 72.65 | 72.00 | 77.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastromatteo, N.; Drudi, L.; Gallione, D.; Bellopede, R.; Clerico, M. Assessment of Environmental Parameters in Natural Coastal Scenery and Compositional by Means of an Innovative Approach. Atmosphere 2024, 15, 1379. https://doi.org/10.3390/atmos15111379
Mastromatteo N, Drudi L, Gallione D, Bellopede R, Clerico M. Assessment of Environmental Parameters in Natural Coastal Scenery and Compositional by Means of an Innovative Approach. Atmosphere. 2024; 15(11):1379. https://doi.org/10.3390/atmos15111379
Chicago/Turabian StyleMastromatteo, Nicole, Lia Drudi, Davide Gallione, Rossana Bellopede, and Marina Clerico. 2024. "Assessment of Environmental Parameters in Natural Coastal Scenery and Compositional by Means of an Innovative Approach" Atmosphere 15, no. 11: 1379. https://doi.org/10.3390/atmos15111379
APA StyleMastromatteo, N., Drudi, L., Gallione, D., Bellopede, R., & Clerico, M. (2024). Assessment of Environmental Parameters in Natural Coastal Scenery and Compositional by Means of an Innovative Approach. Atmosphere, 15(11), 1379. https://doi.org/10.3390/atmos15111379