Investigations on Stubble-Burning Aerosols over a Rural Location Using Ground-Based, Model, and Spaceborne Data
Abstract
:1. Introduction
2. Experimental Site
3. Data and Methodology
3.1. AERONET
3.2. Aethalometer
3.3. NAAPS Model
3.4. CALIPSO
3.5. Air Mass Back-Trajectories
4. Results and Discussion
4.1. The MODIS Fire Image and Columnar AODs During an Aerosol-Laden Day
4.2. Day-to-Day Variation in Different Types of AODs (FM and CM, 500 nm), AE (440–870 nm), and FMF (500 nm)
4.3. Aerosol Size Distribution (ASD)
4.4. Single-Scattering Albedo (SSA)
4.5. Radiative Forcing (RF, Wm−2)
4.6. Variations in BC Mass Concentration and Percentage of Biomass Burning (BB, %)
4.7. Surface Concentration of Smoke in Aerosol-Laden Day
4.8. CALIPSO Images During Smoke-Event Period
4.9. Detection and Transport of Biomass-Burning Aerosols
5. Conclusions
- The smoke intrusion caused an increase in the AOD and Ångström exponent, suggesting the dominance of fine-mode aerosols.
- A significant increase in aerosol size distribution over experimental sites due to the long-range transport of smoke aerosols was observed.
- Higher values of BC and maximum percentage of BB aerosols were observed in the region during the study period.
- The observed higher atmospheric forcing (230.4 W/m2) appears during the aerosol-laden day due to the biomass-burning activity.
- CALIPSO data also revealed that, during the study period, more smoke and polluted dust aerosols were present up to 3 km in the atmosphere.
- The NAAPS model images of smoke-surface concentrations have been studied.
- Winds at different altitudes (back-trajectories from the HYSPLIT model reanalysis) contribute additional aerosols from the biomass-burning activity at the experimental site due to long-range transport.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arola, A.; Lindfors, A.; Natunen, A.; Lehtinen, K.E.J. A case study on biomass burning aerosols: Effects on aerosol optical properties and surface radiation levels. Atmos. Chem. Phys. 2007, 7, 4257–4266. [Google Scholar] [CrossRef]
- Nastos, P.T.; Paliatsos, A.G.; Anthracopoulos, M.B.; Roma, E.S.; Priftis, K.N. Outdoor particulate matter and childhood asthma admissions in Athens, Greece: A time-series study. Environ. Health 2010, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Badarinath, K.V.S.; Kharol, S.K.; Sharma, A.R. Long-range transport of aerosols from agriculture crop residue burning in Indo-Gangetic Plains—A study using LIDAR, ground measurements and satellite data. J. Sol. Terr. Atmos. Phys. 2009, 71, 112–120. [Google Scholar] [CrossRef]
- Adler, G.; Flores, J.M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y. Chemical, physical, and optical evolution of biomass burning aerosols: A case study. Atmos. Chem. Phys. 2011, 11, 1491–1503. [Google Scholar] [CrossRef]
- Pratt, K.A.; Murphy, S.M.; Subramanian, R.; DeMott, P.J.; Kok, G.L.; Campos, T.; Rogers, D.C.; Prenni, A.J.; Heymsfield, A.J.; Seinfeld, J.H.; et al. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes. Atmos. Chem. Phys. 2011, 11, 12549–12565. [Google Scholar] [CrossRef]
- Miller, D.J.; Sun, K.; Zondlo, M.A.; Kanter, D.; Dubovik, O.; Welton, E.J.; Winker, D.M.; Ginoux, P. Assessing boreal forest fire smoke aerosol impacts on U.S. air quality: A case study using multiple data sets. J. Geophys. Res. 2011, 116, D22209. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Eck, T.F.; Smirnov, A.; Holben, B.N. AERONET-based microphysical and optical properties of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth. Atmos. Chem. Phys. Discuss. 2013, 13, 25013–25065. [Google Scholar]
- Shaik, D.S.; Yogesh, K.; Mitra, D.; Singh, A.; Chandola, H.C.; Sateesh, M.; Suresh Babu, S.; Chauhan, P. Impact of biomass burning on regional aerosol optical properties: A case study over northern India. J. Environ. Manag. 2019, 244, 328–343. [Google Scholar] [CrossRef]
- Brown, H.; Liu, X.; Pokhrel, R.; Murphy, S.; Lu, Z.; Saleh, R.; Mielonen, T.; Kokkola, H.; Bergman, T.; Myhre, G.; et al. Biomass burning aerosols in most climate models are too absorbing. Nat. Commun. 2021, 12, 277. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Hobbs, P.V.; Kirchhoff, V.W.J.H.; Artaxo, P.; Remer, L.A.; Holben, B.N.; King, M.D.; Ward, D.E.; Prins, E.M.; Longo, K.M.; et al. Smoke, Clouds, and Radiation—Brazil (SCAR-B) experiment. J. Geophys. Res. 1998, 103, 31783–31808. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013, The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Csiszar, I.; Ellicott, E.; Giglio, L.; Badarinath, K.V.S.; Vermote, E.; Justice, C. Hotspot analysis of vegetation fires and intensity in the Indian region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 224–238. [Google Scholar] [CrossRef]
- Che, H.; Stier, P.; Gordon, H.; Watson-Parris, D.; Deaconu, L. The significant role of biomass burning aerosols in clouds and radiation in the South-eastern Atlantic Ocean. Atmos. Chem. Phys. 2020, 532, 1–27. [Google Scholar] [CrossRef]
- Devara, P.C.S.; Alam, M.P.; Dumka, U.C.; Tiwari, S.; Srivastava, A.K. Anomalous features of black carbon aerosols observed over a rural station during Diwali festival of 2015. In Environmental Pollution; Science; Springer: Berlin, Germany, 2017. [Google Scholar]
- Vijayakumar, K.; Devara, P.C.S. Optical exploration of biomass burning aerosols over a high-altitude station by combining ground-based and satellite data. J. Aerosol Sci. 2014, 72, 1–13. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Devara, P.C.S.; Vijaya Bhaskara Rao, S.; Jayasankar, K.C. Dust aerosol characterization and transport features based on combined ground-based, satellite and model-simulated data. Aeolian Res. 2016, 21, 75–85. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Devara, P.C.S.; Giles, D.M.; Holben, B.N.; Vijaya Bhaskara Rao, S.; Jayasankar, C.K. Validation of satellite and model aerosol optical depth and precipitable water vapour observations with AERONET data over Pune, India. Int. J. Remote Sens. 2018, 39, 7643–7663. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Devara, P.C.S.; Sonbawne, S.M.; Giles, D.M.; Holben, B.N.; Vijaya Bhaskara Rao, S.; Jayasankar, C.K. Solar radiometer sensing of multi-year aerosol features over a tropical urban station: Direct-Sun and inversion products. Atmos. Meas. Tech. 2020, 13, 5569–5593. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Sonbawne, S.M.; Devara, P.C.S.; Bhoyar, P.D. Multisite characterization of concurrent black carbon and biomass burning around COVID-19 Lockdown period. Urban Clim. 2021, 39, 100929. [Google Scholar] [CrossRef]
- Drinovec, L.; Močnik, G.; Zotter, P.; Prévôt, A.S.H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; et al. The “dual spot” Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 2015, 8, 1965–1979. [Google Scholar] [CrossRef]
- Weingartner, E.; Saathoff, H.; Schnaiter, M.; Streit, N.; Bitna, B.; Baltensperger, U. Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 2003, 34, 1445–1463. [Google Scholar] [CrossRef]
- Lynch, P.; Reid, J.S.; Westphal, D.L.; Zhang, J.; Hogan, T.F.; Hyer, E.J.; Curtis, C.A.; Hegg, D.A.; Shi, Y.; Campbell, J.R.; et al. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences. Geosci. Model Dev. 2016, 9, 1498–1522. [Google Scholar] [CrossRef]
- Hogan, T.F.; Liu, M.; Ridout, J.A.; Peng, M.S.; Whitcomb, T.R.; Ruston, B.C.; Reynolds, C.A.; Eckermann, S.D.; Moskaitis, J.R.; Baker, N.L.; et al. The Navy Global Environmental Model. Oceanography 2014, 27, 116–125. [Google Scholar] [CrossRef]
- Winker, D.; Hunt, W.H.; Mc Gill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, L19803. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Badarinath, K.V.S.; Kharol, S.K.; Kaskaoutis, D.G.; Sharma, A.R.; Ramaswamy, V.; Kambezidis, H.D. Long-range transport of dust aerosols over the Arabian Sea and Indian region—A case study using satellite data and ground-based measurements. Glob. Planet. Change 2010, 72, 164–181. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. Description of the Hysplit_4 Modeling System. NOAA Technical Memorandum ERLARL-224; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1998. Available online: http://www.arl.noaa.gov/ready/hysplit4.html (accessed on 1 January 2020).
- Kharol, S.K.; Badarinath, K.V.S. Impact of biomass burning aerosol properties over tropical urban region of Hyderabad, India. Geophys. Res. Lett. 2006, 33, L20801. [Google Scholar] [CrossRef]
- Carrico, C.M.; Prenni, A.J.; Kreidenweis, S.M.; Levin, E.J.T.; McCluskey, C.S.; DeMott, P.J.; McMeeking, G.R.; Nakao, S.; Stockwell, C.; Yokelson, R.J. Rapidly evolving ultrafine and fine mode biomass smoke physical properties: Comparing laboratory and field results. J. Geophys. Res. 2016, 121, 5750–5768. [Google Scholar] [CrossRef]
- Hodshire, A.L.; Bian, Q.; Ramnarine, E.; Lonsdale, C.R.; Alvarado, M.J.; Kreidenweis, S.M.; Jathar, S.H.; Pierce, J.R. More than emissions and chemistry: Fire size, dilution, and background aerosol also greatly influence near-field biomass burning aerosol aging. J. Geophys. Res. 2019, 124, 5589–5611. [Google Scholar] [CrossRef]
- Hodshire, A.L.; Ramnarine, E.; Akherati, A.; Alvarado, M.L.; Farmer, D.K.; Jathar, S.H.; Kreidenweis, S.M.; Lonsdale, C.R.; Onasch, T.B.; Springston, S.R.; et al. Dilution impacts on smoke aging: Evidence in Biomass Burning Observation Project (BBOP) data. Atmos. Chem. Phys. 2021, 21, 6839–6855. [Google Scholar] [CrossRef]
- Sakamoto, K.M.; Laing, J.R.; Stevens, R.G.; Jaffe, D.A.; Pierce, J.R. The evolution of biomass-burning aerosol size distributions due to coagulation: Dependence on fire and meteorological details and parameterization. Atmos. Chem. Phys. 2016, 16, 7709–7724. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Incorporated, NY, USA, 2016; ISBN 978-1-118-94740-1. [Google Scholar]
- Lin, C.-A.; Lu, C.-H.; Chen, S.-P.; Hung, W.-T.; Civerolo, K.L.; Rattigan, O.V. Characterization of intra-continental smoke transport and impact on New York State air quality using aerosol reanalysis and multi-platform observations. Atmos. Pollut. Res. 2021, 12, 154–166. [Google Scholar] [CrossRef]
- Tariq, S.; ul-Haq, Z.; Nawaz, H.; Mehmood, U.; Babar, Z.B. Remote sensing of aerosols due to biomass burning over Kanpur, Sao-Paulo, Ilorin and Canberra. J. Atmos. Chem. 2022, 80, 1–52. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Koren, I. Smoke and pollution aerosol affects cloud cover. Science 2006, 313, 655–658. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vijayakumar, K.; Devara, P.C.S.; Yadav, S. Investigations on Stubble-Burning Aerosols over a Rural Location Using Ground-Based, Model, and Spaceborne Data. Atmosphere 2024, 15, 1383. https://doi.org/10.3390/atmos15111383
Vijayakumar K, Devara PCS, Yadav S. Investigations on Stubble-Burning Aerosols over a Rural Location Using Ground-Based, Model, and Spaceborne Data. Atmosphere. 2024; 15(11):1383. https://doi.org/10.3390/atmos15111383
Chicago/Turabian StyleVijayakumar, Katta, Panuganti China Sattilingam Devara, and Saurabh Yadav. 2024. "Investigations on Stubble-Burning Aerosols over a Rural Location Using Ground-Based, Model, and Spaceborne Data" Atmosphere 15, no. 11: 1383. https://doi.org/10.3390/atmos15111383
APA StyleVijayakumar, K., Devara, P. C. S., & Yadav, S. (2024). Investigations on Stubble-Burning Aerosols over a Rural Location Using Ground-Based, Model, and Spaceborne Data. Atmosphere, 15(11), 1383. https://doi.org/10.3390/atmos15111383