Variations over 20 Years in Vegetation Dynamics and Its Coupled Responses to Individual and Compound Meteorological Drivers in Sichuan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Datasets
2.3. Methods
2.3.1. Coefficient of Variation Method
2.3.2. Theil–Sen Median Trend Analysis and Mann–Kendall Statistical Test
2.3.3. Hurst Exponent Analysis
2.3.4. Standardized Precipitation Evapotranspiration Index (SPEI)
2.3.5. Correlation Analysis
2.3.6. Lag Time
3. Results and Discussion
3.1. Changes in Single and Multiple Hydrothermal Factors in Sichuan Province
3.1.1. Single Hydrothermal Factors
Intra- and Inter-Annual Variations in Precipitation
Intra- and Inter-Annual Variations in Temperature
Intra- and Inter-Annual Variations in Sunshine Duration
3.1.2. Multiple Hydrothermal Factors
Temporal Trends
Spatial Trends
3.2. Spatiotemporal Variations in NDVI in Sichuan Province
3.2.1. Temporal Changes
3.2.2. Spatial Changes
Mean Spatial Variations
Spatial Fluctuations
Spatial Distribution
Spatial Future Change Trends
3.3. Correlation Analysis and Lag Effect of NDVI on Climatic Factors in Sichuan Province
3.3.1. Correlation of NDVI with Single Climatic Factors
3.3.2. Time Lag Effect of NDVI on Single Climatic Factors
Precipitation
Temperature
Sunshine Duration
3.3.3. Correlation Between NDVI and Hydrothermal Climatic Factors
3.3.4. Time Lag Effect of NDVI on Multiple Climatic Factors
4. Conclusions
- (1)
- From 2000 to 2020, Sichuan Province saw an upward trend in precipitation and temperature, with geographical variations observed across the province. The province experienced periods of drought, most notably between 2006 and 2007 and between 2011 and 2012;
- (2)
- Since the implementation of the Natural Forest Protection Project in 2000, vegetation coverage in the province has consistently increased. The NDVI levels are highest during the summer and growing season, with spatial distribution showing higher values in the east and lower in the west. The area with no change in vegetation coverage accounted for the majority (55.2%) from 2000 to 2020. The future trend of the NDVI in Sichuan Province is characterized by continuous improvement, with specific regions showing shifts from falling to rising;
- (3)
- The NDVI in Sichuan Province generally exhibits a positive correlation with precipitation, temperature, and sunshine hours. However, the correlation with sunshine hours is primarily negative in autumn. The correlation between the NDVI and the SPEI is also primarily positive, except in winter;
- (4)
- The lag time of the NDVI response to precipitation, temperature, and the SPEI is one month, indicating a high sensitivity of vegetation growth to these climatic factors. The lag time for sunshine hours is two months, with the longest lag time of up to five months observed in western Sichuan.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, J.; Wu, H.B.; Fu, B.J.; Liu, Z.Y.; Gu, P.; Wang, J.J.; Zhao, C.; Li, Q.; Chen, H.S.; Lu, H.Y.; et al. Vegetation feedback causes delayed ecosystem response to East Asian Summer Monsoon Rainfall during the Holocene. Nat. Commun. 2021, 12, 1843. [Google Scholar] [CrossRef] [PubMed]
- Han, W.J.; Chen, D.H.; Li, H.; Chang, Z.; Chen, J.; Ye, L.Z.; Liu, S.S.; Wang, Z. Spatiotemporal Variation of NDVI in Anhui Province from 2001 to 2019 and Its Response to Climatic Factors. Forests 2022, 13, 1643. [Google Scholar] [CrossRef]
- Gu, Z.J.; Duan, X.W.; Shi, Y.D.; Li, Y.; Pan, X. Spatiotemporal variation in vegetation coverage and its response to climatic factors in the Red River Basin, China. Ecol. Indic. 2018, 93, 54–64. [Google Scholar] [CrossRef]
- Li, X.G.; Zhu, L.Q.; Chen, C.N. Spatial-temporal variation of vegetation NDVI in Henan Province from 2000 to 2015. J. Henan Univ. 2018, 48, 554–564. [Google Scholar]
- Li, Y.; Xie, Z.; Qin, Y. Responses of the Yellow River basin vegetation: Climate change. Int. J. Clim. Chang. Str. 2019, 11, 483–498. [Google Scholar] [CrossRef]
- Liu, Y.W.; Shen, X.J.; Zhang, J.Q.; Wang, Y.J.; Wu, L.Y.; Ma, R.; Lu, X.G.; Jiang, M. Temporal and Spatial Variation in Vegetation Coverage and Its Response to Climatic Change in Marshes of Sanjiang Plain, China. Atmosphere 2022, 13, 2077. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote. Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Linderholm, H.W. Growing season changes in the last century. Agric. Forest Meteorol. 2006, 137, 1–14. [Google Scholar] [CrossRef]
- Yang, H.F.; Xu, H.; Zhong, X.N.; Hu, D.D. Spatio-temporal variation of vegetation coverage and its response to climatic factors from 2001 to 2015: A case study in Anhui, China. Environ. Eng. Manag. J. 2021, 20, 927–939. [Google Scholar] [CrossRef]
- Zhong, S.; Sun, Z.; Di, L. Characteristics of vegetation response to drought in the CONUS based on long-term remote sensing and meteorological data. Ecol. Indic. 2021, 127, 107767. [Google Scholar] [CrossRef]
- Lawal, S. On the suitability of using Vegetation Indices to monitor the response of Africa’s terrestrial ecoregions to drought. Sci. Total Environ. 2021, 792, 148282. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.F.; Price, K.P.; Ellis, J.; Shi, P.J. Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sens. Environ. 2003, 87, 42–54. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, B.Q. The responses of natural vegetation dynamics to drought during the growing season across Chin. J. Hydrol. 2019, 574, 706–714. [Google Scholar] [CrossRef]
- Sun, Y.L.; Shan, M.; Pei, X.R.; Zhang, X.K.; Yang, Y.L. Assessment of the impacts of climate change and human activities on vegetation cover change in the Haihe River basin, China. Phys. Chem. Earth 2019, 115, 102834. [Google Scholar] [CrossRef]
- Karabulut, M. An Examination of Relationships Between Vegetation and Rainfall Using Maximum Value Composite AVHRR-NDVI Data. Turk. J. Bot. 2003, 27, 93–101. [Google Scholar]
- Shrestha, B.; Zhang, L.F.; Shrestha, S.; Khadka, N.; Maharjan, L. Spatiotemporal patterns, sustainability, and primary drivers of NDVI-derived vegetation dynamics (2003–2022) in Nepa. Environ. Monit. Assess. 2024, 196, 607. [Google Scholar] [CrossRef]
- Chen, X.S.; Yan, Q.W.; Yi, M.H.; Ma, X.S.; Li, G.; Wu, Z.H.; Pan, Q.K.; Qiu, Y. Analysis of spatial and temporal variations of NDVI and its driving factors in the corridor of Lan-Xin railway. Front. Env. Sci. 2024, 12, 1369974. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, S.; Zhang, C.; Han, S.; Zou, S.; Chen, E. Assessing the Impact of Fractional Vegetation Cover on Urban Thermal Environment: A Case Study of Hangzhou, China. Sustain. Cities Soc. 2023, 96, 104663. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, M.; Chen, E.; Zhang, C.; Han, Y. Impact of Seasonal Global Land Surface Temperature (LST) Change on Gross Primary Production (GPP) in the Early 21st Century. Sustain. Cities Soc. 2024, 110, 105572. [Google Scholar] [CrossRef]
- Xu, K.; Wang, X.P.; Jiang, C.; Sun, O.J. Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity. Ecosystem 2020, 7, 315–326. [Google Scholar] [CrossRef]
- Yan, W.; Wang, H.S.; Jiang, C.; Jin, S.F.; Ai, J.L.; Sun, O.J. Satellite view of vegetation dynamics and drivers over southwestern China. Ecol. Indic. 2021, 130, 108074. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Begueria, S.; Trigo, R. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2012, 110, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Van Hoek, M.; Jia, L.; Zhou, J.; Zheng, C.; Menenti, M. Early drought detection by spectral analysis of satellite time series of precipitation and normalized difference vegetation index (NDVI). Remote Sens. 2016, 8, 422. [Google Scholar] [CrossRef]
- Zhe, M.; Zhang, X.Q. Time-lag effects of NDVI responses to climate change in the Yamzhog Yumco Basin, South Tibet-ScienceDirect. Ecol. Indic. 2021, 124, 107431. [Google Scholar] [CrossRef]
- Dai, T.R.; Dai, X.A.; Lu, H.; He, T.; Li, W.L.; Li, C.; Huang, S.Q.; Huang, Y.Y.; Tong, C.B.; Qu, G.; et al. The impact of climate change and human activities on the change in the net primary productivity of vegetation-taking Sichuan Province as an example. Environ. Sci. Pollut. Res. Int. 2023, 31, 7514–7532. [Google Scholar] [CrossRef]
- Ning, L.N.; Peng, W.F.; Yu, Y.N.; Xiang, J.Y.; Wang, Y. Quantifying vegetation change and driving mechanism analysis in Sichuan from 2000 to 2020. Front. Environ. Sci. 2023, 11, 1261295. [Google Scholar] [CrossRef]
- Ji, T.; Li, G.S.; Yang, H.; Liu, R.; He, T.R. Comprehensive drought index as an indicator for use in drought monitoring integrating multi-source remote sensing data: A case study covering the Sichuan-Chongqing region. Int. J. Remote Sens. 2017, 39, 786–809. [Google Scholar] [CrossRef]
- Peng, W.F.; Zhang, D.M.; Luo, Y.M.; Tao, S.; Xu, X.L. Influence of natural factors on vegetation NDVI using geographical detection in Sichuan Province. Acta Geogr. Sin. 2019, 74, 1758–1776. [Google Scholar]
- Zhang, Y.C.; Zhao, Z.Q.; Li, S.C.; Meng, X.F. Indicating variation of surface vegetation cover using SPOT NDVI in the northern part of North China. Geogr. Res. 2008, 27, 745–754. [Google Scholar]
- Zhao, M.Y.; Zhao, Y.X.; Shen, T.Z.; Li, S.; Yao, G.Y.; Chen, Z.S.C.; Liu, Y.Q.; Xu, Y. Co-Kriging interpolation of Mn and Zn pollution distribution and high-score mapping based on in situ PXRF data. Res. Environ. Sci. 2022, 36, 599–609. [Google Scholar]
- Hu, D.G.; Shu, H. Spatiotemporal interpolation of precipitation across Xinjiang, China using space-time Co-Kriging. Cent. South Univ. 2019, 26, 684–694. [Google Scholar] [CrossRef]
- Zhang, R.D. The Theory and Application of Spatial Variation; Science Press: Beijing, China, 2005. [Google Scholar]
- Tucker, C.J.; Newcomb, W.W.; Los, S.O.; Prince, S.D. Mean and inter-year variation of growing-season normalized difference vegetation index for the Sahel 1981–1989. Int. J. Remote Sens. 1991, 12, 1133–1135. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2006, 105, 142–154. [Google Scholar] [CrossRef]
- Mo, K.L.; Chen, Q.W.; Chen, C.; Zhang, J.Y.; Wang, L.; Bao, Z.X. Spatiotemporal variation of correlation between vegetation cover and precipitation in an arid mountain-oasis river basin in northwest China. J. Hydrol. 2019, 514, 138–147. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.; Liu, M.; Xue, Z.; Liu, M. Spatio-temporal variation characteristics of NDVI and its response to climate on the loess plateau from 1985 to 2015. Catena 2021, 203, 105331. [Google Scholar] [CrossRef]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-term trends and seasonality detection of the observed flow in Yangtze River using Mann-Kendall and Sen’s innovative trend method. Water 2019, 11, 1855. [Google Scholar] [CrossRef]
- Aziz, O.I.A.; Burn, D.H. Trends and variability in the hydrological regime of the Mackenzie River Basin. J. Hydrol. 2006, 319, 282–294. [Google Scholar] [CrossRef]
- Jing, J.L.; Deng, Q.F.; He, C.X.; Wang, Y.F.; Ma, B.X. Spatiotemporal evolution of NDVI and its climate driving factors in the southwest Karst area from 1999 to 2019. Res. Soil Water Conserv. 2023, 30, 232–239. [Google Scholar]
- Wang, S.W.; Sun, D.Y.; Zhou, M.; Wang, Y.K.; Wang, X.B.; Ji, Z.H.; Zhang, W.R.; Wu, L.Z. Temporal and spatial variation of temperature in Shule River Basin from 1951 to 2020. Arid Zone Res. 2023, 40, 1065–1074. [Google Scholar]
- Tong, S.Q.; Zhang, J.Q.; Bao, Y.H.; Lai, Q.; Lian, X.; Li, N.; Bao, Y.B. Analyzing vegetation dynamic trend on the Mongolian Plateau based on the Hurst exponent and influencing factors from 1982–2013. J. Geogr. Sci. 2018, 28, 595–610. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-guidelines for computing crop water requirements. Irrig. Drain. Pap. 1998, 56, 147–151. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Xue, H.Z.; Li, Y.Y.; Dong, G.T. Analysis of spatial-temporal variation characteristics of meteorological drought in Hexi Corridor based on SPEI index. Chin. J. Agrometeorol. 2022, 43, 923–934. [Google Scholar]
- Li, X.X.; Ju, H.; Liu, Q.; Li, Y.C.; Qin, X.C. Analysis of drought characters based on the SPEI-PM index in Huang-Huai-Hai plain. Acta Ecol. Sin. 2017, 37, 2054–2066. [Google Scholar]
- Jiang, L.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in central Asia. Sci. Total Environ. 2017, 599–600, 967–980. [Google Scholar] [CrossRef]
- Wang, T. Vegetation NDVI change and its relationship with climate change and human activities in Yulin, Shanxi Province of China. J. Geosci. Environ. Prot. 2016, 4, 28. [Google Scholar]
- Huang, J.; Wang, H.M.; Dai, Q.; Han, D.W. Analysis of NDVI data for crop identification and yield estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4374–4384. [Google Scholar] [CrossRef]
WS/mm | NS/mm | ES/mm | CS/mm | SS/mm | Total/mm | |
---|---|---|---|---|---|---|
Spring | 148.00 | 160.25 | 251.95 | 177.02 | 240.23 | 172.69 |
Summer | 415.09 | 343.94 | 334.26 | 349.79 | 407.67 | 394.39 |
Autumn | 182.88 | 177.99 | 249.88 | 195.63 | 234.99 | 197.19 |
Winter | 18.56 | 25.85 | 52.69 | 36.43 | 73.39 | 30.47 |
Growing season | 656.85 | 579.42 | 639.81 | 594.78 | 714.37 | 650.23 |
WS/°C | NS/°C | ES/°C | CS/°C | SS/°C | Total/°C | |
---|---|---|---|---|---|---|
Spring | 11.76 | 18.04 | 18.42 | 18.28 | 16.58 | 13.89 |
Summer | 18.64 | 26.41 | 27.90 | 26.79 | 24.44 | 21.39 |
Autumn | 11.29 | 17.42 | 18.58 | 17.98 | 16.47 | 13.53 |
Winter | 2.64 | 7.16 | 7.93 | 7.53 | 6.80 | 4.50 |
Growing season | 16.58 | 23.72 | 24.86 | 24.11 | 21.99 | 19.09 |
WS/h | NS/h | ES/h | CS/h | SS/h | Total/h | |
---|---|---|---|---|---|---|
Spring | 533.86 | 396.04 | 380.22 | 346.05 | 348.65 | 476.04 |
Summer | 452.09 | 422.96 | 522.83 | 406.19 | 402.53 | 452.26 |
Autumn | 432.82 | 232.32 | 244.70 | 192.67 | 208.62 | 359.51 |
Winter | 485.29 | 221.12 | 135.06 | 167.22 | 186.43 | 373.96 |
Growing season | 935.90 | 794.24 | 903.73 | 732.56 | 729.88 | 891.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Q.; Zhang, C.; Dong, J.; Li, Y.; Li, Y.; Huang, Y.; Zhang, H.; Fan, J. Variations over 20 Years in Vegetation Dynamics and Its Coupled Responses to Individual and Compound Meteorological Drivers in Sichuan Province, China. Atmosphere 2024, 15, 1384. https://doi.org/10.3390/atmos15111384
Deng Q, Zhang C, Dong J, Li Y, Li Y, Huang Y, Zhang H, Fan J. Variations over 20 Years in Vegetation Dynamics and Its Coupled Responses to Individual and Compound Meteorological Drivers in Sichuan Province, China. Atmosphere. 2024; 15(11):1384. https://doi.org/10.3390/atmos15111384
Chicago/Turabian StyleDeng, Qian, Chenfeng Zhang, Jiong Dong, Yanchun Li, Yunyun Li, Yi Huang, Hongxue Zhang, and Jingjing Fan. 2024. "Variations over 20 Years in Vegetation Dynamics and Its Coupled Responses to Individual and Compound Meteorological Drivers in Sichuan Province, China" Atmosphere 15, no. 11: 1384. https://doi.org/10.3390/atmos15111384
APA StyleDeng, Q., Zhang, C., Dong, J., Li, Y., Li, Y., Huang, Y., Zhang, H., & Fan, J. (2024). Variations over 20 Years in Vegetation Dynamics and Its Coupled Responses to Individual and Compound Meteorological Drivers in Sichuan Province, China. Atmosphere, 15(11), 1384. https://doi.org/10.3390/atmos15111384