CHIMBO Air Quality Modeling System: Verification and Processes Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. CHIMBO Modeling Chain: Model Description and Set up
2.2. Meteorological Measurements
2.3. Ground-Based Concentration Observations over the Italian Domain
2.4. Air Quality Simulations: CAMS Ensemble Model
2.5. Measurements of Particulate Chemical Composition
3. Results
3.1. Meteorological Parameters
3.2. Concentration Data
3.3. Evaluation Against Chemical Measurements in Northern Italy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Vries, W.; Posch, M.; Simpson, D.; de Leeuw, F.A.A.M.; van Grinsven, H.J.M.; Schulte-Uebbing, L.F.; Sutton, M.A.; Ros, G.H. Trends and Geographic Variation in Adverse Impacts of Nitrogen Use in Europe on Human Health, Climate, and Ecosystems: A Review. Earth-Sci. Rev. 2024, 253, 104789. [Google Scholar] [CrossRef]
- Mitchell, J.F.B. The “Greenhouse” Effect and Climate Change. Rev. Geophys. 1989, 27, 115–139. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- WHO Global Air QUALITY guidelines. In Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Available online: https://iris.who.int/handle/10665/345329 (accessed on 25 September 2024).
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and Perspectives for Achieving Carbon Neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Chu, H.; Huang, Z.; Zhang, Z.; Yan, X.; Qiu, B.; Xu, N. Integration of Carbon Emission Reduction Policies and Technologies: Research Progress on Carbon Capture, Utilization, and Storage Technologies. Sep. Purif. Technol. 2024, 343, 127153. [Google Scholar] [CrossRef]
- IPCC. 2022: Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; pp. 3–33. [Google Scholar] [CrossRef]
- Bonazza, A.; Messina, P.; Sabbioni, C.; Grossi, C.M.; Brimblecombe, P. Mapping the impact of climate change on surface recession of carbonate buildings in Europe. Sci. Total Environ. 2009, 407, 2039–2050. [Google Scholar] [CrossRef] [PubMed]
- Spezzano, P. Mapping the susceptibility of UNESCO World Cultural Heritage sites in Europe to ambient (outdoor) air pollution. Sci. Total Environ. 2021, 754, 142345. [Google Scholar] [CrossRef]
- Bonazza, A.; Sardella, A. Climate change and cultural heritage: Methods and approaches for damage and risk assessment addressed to a practical application. Heritage 2023, 6, 3578–3589. [Google Scholar] [CrossRef]
- Dechezleprêtre, A.; Koźluk, T.; Kruse, T.; Nachtigall, D.; De Serres, A. Do Environmental and Economic Performance Go Together? A Review of Micro-Level Empirical Evidence from the Past Decade or So. Int. Rev. Environ. Resour. Econ. 2019, 13, 1–118. [Google Scholar] [CrossRef]
- EEA: Europe’s Air Quality Status 2024, EEA Briefing no. 06/2024. Available online: https://www.eea.europa.eu//publications/europes-air-quality-status-2024 (accessed on 6 November 2024).
- Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality forecasting, part I: History, techniques, and current status. Atmos. Environ. 2012, 60, 632–655. [Google Scholar] [CrossRef]
- Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality forecasting, Part II: State of the science, current research needs, and future prospects. Atmos. Environ. 2012, 60, 656–676. [Google Scholar] [CrossRef]
- Mailler, S.; Menut, L.; Khvorostyanov, D.; Valari, M.; Couvidat, F.; Siour, G.; Turquety, S.; Briant, R.; Tuccella, P.; Bessagnet, B.; et al. CHIMERE-2017: From urban to hemispheric chemistry-transport modeling. Geosci. Model Dev. 2017, 10, 2397–2423. [Google Scholar] [CrossRef]
- Simpson, D.; Benedictow, A.; Berge, H.; Bergström, R.; Emberson, L.D.; Fagerli, H.; Flechard, C.R.; Hayman, G.D.; Gauss, M.; Jonson, J.E.; et al. The EMEP MSC-W chemical transport model—Technical description. Atmos. Chem. Phys. 2012, 12, 7825–7865. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled ‘online’ chemistry in the WRF model. Atmos. Environ. 2005, 39, 6957–6976. [Google Scholar] [CrossRef]
- Monks, P.S.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.L.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; et al. Atmospheric Composition Change—Global and Regional Air Quality. Atmos. Environ. 2009, 43, 5268–5350. [Google Scholar] [CrossRef]
- Peuch, V.-H.; Engelen, R.; Rixen, M.; Dee, D.; Flemming, J.; Buontempo, C. The Copernicus Atmosphere Monitoring Service from Research to Operations. Bull. Am. Meteorol. Soc. 2022, 103, E2650–E2668. [Google Scholar] [CrossRef]
- Marécal, V.; Peuch, V.-H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; et al. A regional air quality forecasting system over Europe: The MACC-II daily ensemble production. Geosci. Model Dev. 2015, 8, 2777–2813. [Google Scholar] [CrossRef]
- Davolio, S.; Buzzi, A.; Malguzzi, P. Orographic triggering of long-lived convection in three dimensions. Meteorol. Atmos. Phys. 2009, 103, 35–44. [Google Scholar] [CrossRef]
- Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Blond, N.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; et al. CHIMERE 2013: A model for regional atmospheric composition modelling. Geosci. Model Dev. 2013, 6, 981–1028. [Google Scholar] [CrossRef]
- Cesari, R.; Landi, T.C.; D’Isidoro, M.; Mircea, M.; Russo, F.; Malguzzi, P.; Tampieri, F.; Maurizi, A. The On-Line Integrated Mesoscale Chemistry Model BOLCHEM. Atmosphere 2021, 12, 192. [Google Scholar] [CrossRef]
- Ricciardelli, I.; Bacco, D.; Rinaldi, M.; Bonafè, G.; Scotto, F.; Trentini, A.; Bertacci, G.; Ugolini, P.; Zigola, C.; Rovere, F.; et al. A three-year investigation of daily PM2.5 main chemical components in four sites: The routine measurement program of the Supersito Project (Po Valley, Italy). Atmos. Environ. 2017, 152, 418–430. [Google Scholar] [CrossRef]
- Gilardoni, S.; Massoli, P.; Paglione, M.; Giulianelli, L.; Carbone, C.; Rinaldi, M.; Decesari, S.; Sandrini, S.; Costabile, F.; Gobbi, G.P.; et al. Direct observation of aqueous secondary organic aerosol from biomass burning emissions. Proc. Natl. Acad. Sci. USA 2016, 113, 10013–10018. [Google Scholar] [CrossRef] [PubMed]
- Decesari, S.; Sowlat, M.H.; Hasheminassab, S.; Sandrini, S.; Gilardoni, S.; Facchini, M.C.; Fuzzi, S.; Sioutas, C. Enhanced toxicity of aerosol in fog conditions in the Po Valley, Italy. Atmos. Chem. Phys. 2017, 17, 7721–7773. [Google Scholar] [CrossRef]
- Paglione, M.; Gilardoni, S.; Rinaldi, M.; Decesari, S.; Zanca, N.; Sandrini, S.; Giulianelli, L.; Bacco, D.; Ferrari, S.; Poluzzi, V.; et al. The Impact of Biomass Burning and Aqueous-Phase Processing on Air Quality: A Multi-Year Source Apportionment Study in the Po Valley, Italy. Atmos. Chem. Phys. 2020, 20, 1233–1254. [Google Scholar] [CrossRef]
- Pernigotti, D.; Georgieva, E.; Thunis, P.; Bessagnet, B. Impact of Meteorological Modelling on Air Quality: Summer and Winter Episodes in the Po Valley (Northern Italy). Int. J. Environ. Pollut. 2012, 50, 111–119. [Google Scholar] [CrossRef]
- Pernigotti, D.; Georgieva, E.; Thunis, P.; Bessagnet, B. Impact of Meteorology on Air Quality Modeling over the Po Valley in Northern Italy. Atmos. Environ. 2012, 51, 303–310. [Google Scholar] [CrossRef]
- Pernigotti, D.; Thunis, P.; Cuvelier, C.; Georgieva, E.; Gsella, A.; De Meij, A.; Pirovano, G.; Balzarini, A.; Riva, G.M.; Carnevale, C.; et al. POMI: A Model Intercomparison Exercise over the Po Valley. Air Qual. Atmos. Health 2013, 6, 701–715. [Google Scholar] [CrossRef]
- Cesari, R.; Landi, T.; Maurizi, A. The coupled chemistry-meteorology model BOLCHEM: An application to air pollution in the Po Valley (Italy) hot spot. Int. J. Environ. Pollut. 2019, 65, 1–24. [Google Scholar] [CrossRef]
- Veratti, G.; Stortini, M.; Amorati, R.; Bressan, L.; Giovannini, G.; Bande, S.; Bissardella, F.; Ghigo, S.; Angelino, E.; Colombo, L.; et al. Impact of NOx and NH3 Emission Reduction on Particulate Matter across Po Valley: A LIFE-IP-PREPAIR Study. Atmosphere 2023, 14, 762. [Google Scholar] [CrossRef]
- Buzzi, A.; Fantini, M.; Malguzzi, P.; Nerozzi, F. Validation of a limited area model in cases of Mediterranean cyclogenesis: Surface fields and precipitation scores. Meteorol. Atmos. Phys. 1994, 53, 137–153. [Google Scholar] [CrossRef]
- Nagata, M.; Leslie, L.; Kamahori, H.; Nomura, R.; Mino, H.; Kurihara, Y.; Rogers, E.; Elsberry, R.L.; Basu, B.K.; Buzzi, A.; et al. A mesoscale model intercomparison: A case of explosive development of a tropical cyclone (COMPARE III). J. Meteorol. Soc. Jpn. 2001, 79, 999–1033. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Koussis, A.; Feidas, C.; Buzzi, A.; Malguzzi, P. The meteorological model BOLAM at the National Observatory of Athens: Assessment of two-year operational use. J. Appl. Meteor. 2003, 42, 1667–1678. [Google Scholar] [CrossRef]
- Lattuati, M. Contribution a’ L’e´tude du Bilan de L’ozone Troposphe´ Rique a’ L’interface de L’europe et de l’Atlantique Nord: Mode´Lisation Lagrangienne et Mesures en Altitude. Ph.D. Thesis, University Pierre et Marie Curie, Paris, France, 1997. [Google Scholar]
- Derognat, C.; Beekmann, M.; Baeumle, M.; Martin, D.; Schmidt, H. Effect of Biogenic Volatile Organic Compound Emissions on Tropospheric Chemistry During the Atmospheric Pollution over the Paris Area (ESQUIF) Campaign in the Ile-de-France Region. J. Geophys. Res. 2003, 108, 8560. [Google Scholar] [CrossRef]
- Carter William, P.L. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Pankow, J.F. An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmos. Environ. 2007, 41, S75–S79. [Google Scholar] [CrossRef]
- Malguzzi, P.; Buzzi, A.; Drofa, O. The Meteorological Global Model GLOBO at the ISAC-CNR of Italy: Assessment of 1.5 Yr of Experimental Use for Medium-Range Weather Forecast. Weather Forecast. 2011, 26, 1045–1055. [Google Scholar] [CrossRef]
- Mastrangelo, D.; Malguzzi, P.; Rendina, C.; Drofa, O.; Buzzi, A. First Outcomes from the CNR-ISAC Monthly Forecasting System. Adv. Sci. Res. 2012, 8, 77–82. [Google Scholar] [CrossRef]
- Kuenen, J.; Visschedijk, A.; Jozwicka, M.; Denier Van Der Gon, H. TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 2014, 14, 10963–10976. [Google Scholar] [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of Global Terrestrial Isoprene Emissions Using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef]
- Jackson, P.L.; Mayr, G.; Vosper, D. Dynamically-Driven Winds. In Mountain Weather Research and Forecasting; Chow, F.K., De Wekker, D.F.J., Snyder, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 35–119, 121–218. [Google Scholar] [CrossRef]
- Schmidli, J.; Böing, S.; Fuhrer, O. Accuracy of Simulated Diurnal Valley Winds in the Swiss Alps: Influence of Grid Resolution, Topography Filtering, and Land Surface Datasets. Atmosphere 2018, 9, 196. [Google Scholar] [CrossRef]
- Diémoz, H.; Barnaba, F.; Magri, T.; Pession, G.; Dionisi, D.; Pittavino, S.; Tombolato, I.K.F.; Campanelli, M.; Della Ceca, L.S.; Hervo, M.; et al. Transport of Po Valley Aerosol Pollution to the Northwestern Alps—Part 1: Phenomenology. Atmos. Chem. Phys. 2019, 19, 3065–3095. [Google Scholar] [CrossRef]
- Kodros, J.K.; Papanastasiou, D.K.; Paglione, M.; Masiol, M.; Squizzato, S.; Florou, K.; Skyllakou, K.; Kaltsonoudis, C.; Nenes, A.; Pandis, S.N. Rapid Dark Aging of Biomass Burning as an Overlooked Source of Oxidized Organic Aerosol. Proc. Natl. Acad. Sci. USA 2020, 117, 33028–33033. [Google Scholar] [CrossRef]
- Florou, K.; Kodros, J.K.; Paglione, M.; Jorga, S.; Squizzato, S.; Masiol, M.; Uruci, P.; Nenes, A.; Pandis, S.N. Characterization and Dark Oxidation of the Emissions of a Pellet Stove. Environ. Sci. Atmos. 2023, 3, 1319–1334. [Google Scholar] [CrossRef]
- Tsimpidi, A.P.; Karydis, V.A.; Pandis, S.N.; Lelieveld, J. Global combustion sources of organic aerosols: Model comparison with 84 AMS factor-analysis data sets. Atmos. Chem. Phys. 2016, 16, 8939–8962. [Google Scholar] [CrossRef]
- Meroni, A.; Pirovano, G.; Gilardoni, S.; Lonati, G.; Colombi, C.; Gianelle, V.; Paglione, M.; Poluzzi, V.; Riva, G.; Toppetti, A. Investigating the role of chemical and physical processes on organic aerosol modelling with CAMx in the Po Valley during a winter episode. Atmos. Environ. 2017, 171, 126–142. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Li, L.; Ye, F.; Wang, H.; Guo, S.; Zhang, N.; Qin, M.; Hu, J. Modeling secondary organic aerosols in China: State of the art and perspectives. Curr. Pollut. Rep. 2023, 9, 22–45. [Google Scholar] [CrossRef]
- Jiang, J.; Aksoyoglu, S.; El-Haddad, I.; Ciarelli, G.; Denier van der Gon, H.A.C.D.; Canonaco, F.; Gilardoni, S.; Paglione, M.; Minguillón, M.C.; Favez, O.; et al. Sources of organic aerosols in Europe: A modeling study using CAMx with modified volatility basis set scheme. Atmos. Chem. Phys. 2019, 19, 15247–15270. [Google Scholar] [CrossRef]
- Basla, B.; Agresti, V.; Balzarini, A.; Giani, P.; Pirovano, G.; Gilardoni, S.; Paglione, M.; Colombi, C.; Belis, C.A.; Poluzzi, V.; et al. Simulations of Organic Aerosol with CAMx over the Po Valley during the Summer Season. Atmosphere 2022, 13, 1996. [Google Scholar] [CrossRef]
Background | |||
---|---|---|---|
Urban | Suburban | Rural | |
O3 | 133 | 81 | 60 |
NO2 | 133 | 81 | 60 |
PM10 | 104 | 42 | 37 |
PM2.5 | 98 | 32 | 15 |
Site & Station Name | Site ID | Lat | Lon | Type | PM10 | PM2.5 | Sulfate | Nitrate | Ammonium | Chloride | EC | OC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bologna Supersito | BO | 44.52 | 11.34 | Urban background | 271 | 271 | 274 * | 276 * | 276 * | 128 * | 244 * | 245 * |
San Pietro Capofiume | SPC | 44.65 | 11.62 | Rural background | 276 | 260 | 93 * | 94 * | 94 * | 94 * | 89 * | 89 * |
Parma | PR | 44.79 | 10.33 | Urban background | 281 | 281 | 94 * | 94 * | 94 * | 94 * | 79 * | 79 * |
Rimini | RI | 44.06 | 12.55 | Urban background | 272 | 272 | 97 * | 97 * | 97 * | 97 * | 81 * | 81 * |
Brescia– Villaggio Sereno | BS | 45.51 | 10.19 | Urban background | 167 | - | 166 | 166 | 167 | 166 | 167 | 167 |
Lodi | LO | 45.30 | 9.50 | Urban background | 46 | - | 46 | 46 | 46 | 46 | 46 | 46 |
Schivenoglia (MN) | Schi | 45.02 | 11.08 | Rural background | 269 | - | 268 | 268 | 268 | 269 | 269 | 269 |
Milano-Pascal | MI_PA | 45.48 | 9.23 | Urban background | 248 | - | 253 | 253 | 253 | 253 | 258 | 258 |
Milano-Marche | MI_MA | 45.50 | 9.19 | Urban traffic | 259 | - | 144 | 144 | 138 | 144 | 143 | 143 |
Milano-Senato | MI_SE | 45.47 | 9.20 | Urban traffic | 259 | - | 238 | 238 | 237 | 238 | 251 | 251 |
Aosta | AO | 45.74 | 7.32 | Urban background | - | - | 288 | 288 | 288 | 288 | 113 | 113 |
R | MB | RMSE | |
---|---|---|---|
2 m temperature | 0.998 | −1.40 | 1.49 |
Wind speed | 0.971 | 0.21 | 0.445 |
PM10 | PM2.5 | O3 | NO2 | |||||
---|---|---|---|---|---|---|---|---|
MB | RMSE | MB | RMSE | MB | RMSE | MB | RMSE | |
CHIMBO | −1.5 | 4.5 | −2.8 | 4.4 | +14.2 | 24.7 | −4.2 | 5.4 |
EnsCAMS | −4.0 | 4.6 | −1.7 | 2.4 | +15.2 | 17.2 | −4.0 | 4.5 |
Mean Observed (μg m−3) | Mean Predicted (μg m−3) | NMB (%) | NME (%) | MB (μg m−3) | MAGE (μg m−3) | FBIAS | FERROR | Percent Within a Factor of 2 | |
---|---|---|---|---|---|---|---|---|---|
Overall | |||||||||
PM10 | 31.08 | 20.97 | −28% | 45% | −8.66 | 14.00 | −0.29 | 0.49 | 71% |
PM2.5 | 18.44 | 13.44 | −33% | 64% | −6.03 | 11.81 | −0.37 | 0.71 | 47% |
Sulfate | 1.86 | 1.08 | −43% | 58% | −0.81 | 1.08 | −0.48 | 0.71 | 51% |
Nitrate | 4.91 | 4.53 | −12% | 55% | −0.58 | 2.72 | −0.31 | 0.80 | 49% |
Ammonium | 1.86 | 1.65 | −15% | 53% | −0.27 | 0.99 | 0.00 | 0.64 | 58% |
EC | 0.99 | 0.78 | −14% | 54% | −0.14 | 0.53 | −0.04 | 0.54 | 69% |
OC | 5.81 | 3.81 | −29% | 51% | −1.67 | 2.95 | −0.31 | 0.57 | 66% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landi, T.C.; Paglione, M.; Morichetti, M.; Grasso, F.M.; Roccato, F.; Cesari, R.; Drofa, O. CHIMBO Air Quality Modeling System: Verification and Processes Analysis. Atmosphere 2024, 15, 1386. https://doi.org/10.3390/atmos15111386
Landi TC, Paglione M, Morichetti M, Grasso FM, Roccato F, Cesari R, Drofa O. CHIMBO Air Quality Modeling System: Verification and Processes Analysis. Atmosphere. 2024; 15(11):1386. https://doi.org/10.3390/atmos15111386
Chicago/Turabian StyleLandi, Tony Christian, Marco Paglione, Mauro Morichetti, Fabio Massimo Grasso, Fabrizio Roccato, Rita Cesari, and Oxana Drofa. 2024. "CHIMBO Air Quality Modeling System: Verification and Processes Analysis" Atmosphere 15, no. 11: 1386. https://doi.org/10.3390/atmos15111386
APA StyleLandi, T. C., Paglione, M., Morichetti, M., Grasso, F. M., Roccato, F., Cesari, R., & Drofa, O. (2024). CHIMBO Air Quality Modeling System: Verification and Processes Analysis. Atmosphere, 15(11), 1386. https://doi.org/10.3390/atmos15111386