Spatiotemporal Variation Characteristics of Extreme Precipitation in Henan Province Based on RClimDex Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection of Extreme Precipitation Indices
2.3. Spatial Interpolation Method
2.4. Trend Analysis
2.4.1. Linear Propensity Estimate
2.4.2. The Mann–Kendall Test
2.4.3. Morlet Wavelet Analysis
3. Results
3.1. Characteristics of the Spatial Distribution of Extreme Precipitation
3.2. Trend Analysis of Extreme Precipitation
3.3. Abrupt Analysis of Extreme Precipitation
3.4. Extreme Precipitation Cycle Analysis
4. Discussion
5. Conclusions
- The linear fitting of the interannual variation of extreme precipitation index in Henan Province from 1981 to 2020 has no statistical significance. However, there was a slight upward trend observed in the CDD, Rx1day, Rx5day, and SDII, indicating a potential long-term trend in extreme precipitation indices with considerable uncertainty.
- R99p, Rx1day, Rx5day and SDII showed the mutation in 1994 and 2004, respectively. The analysis revealed a predominant 30-year cyclical pattern in PRCPTOT, R20mm, R95p, R99p, Rx1day, Rx5day, and SDII.
- The multi-year averages of extreme precipitation indices showed the characteristics that CDD gradually decreased from north to south. CWD and R20mm increased from north to south. Rx1day and Rx5day gradually increased from northwest to southeast, and SDII gradually increased from west to east.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akinsanola, A.A.; Kooperman, G.J.; Reed, K.A.; Pendergrass, A.G.; Hannah, W.M. Projected changes in seasonal precipitation extremes over the United States in CMIP6 simulations. Environ. Res. Lett. 2020, 15, 104078. [Google Scholar] [CrossRef]
- Zhi, C.J.; Md, A.A.; Ji, H.Y.; Craig, F.; Kazuo, E. Prediction of extreme rainfall events in 21st century—The results based on Bayesian Markov Chain Monte Carlo. Urban Clim. 2024, 53, 101822. [Google Scholar]
- Liu, J.; Wu, D.Y.; Xu, X.Y.; Ji, M.X.; Chen, Q.L.; Wang, X. Projection of extreme precipitation induced by Arctic amplification over the Northern Hemisphere. Environ. Res. Lett. 2021, 16, 074012. [Google Scholar] [CrossRef]
- Lorenzo, M.N.; Pereira, H.; Alvarez, I.; Dias, J.M. Standardized Precipitation Index (SPI) evolution over the Iberian Peninsula during the 21st century. Atmos. Res. 2024, 297, 107132. [Google Scholar] [CrossRef]
- Ning, G.C.; Luo, M.; Zhang, W.; Liu, Z.; Wang, S.G.; Gao, T. Rising risk of compound extreme heat-precipitation events in China. Int. J. Climatol. 2022, 42, 5785–5795. [Google Scholar] [CrossRef]
- Peng, C.C.; Zeng, J.Y.; Chen, K.S.; Li, Z.; Ma, H.L.; Zhang, X.; Shi, P.F.; Wang, T.T.; Yi, L.; Bi, H.Y. Global spatiotemporal trend of satellite-based soil moisture and its influencing factors in the early 21st century. Remote Sens. Environ. 2023, 291, 113569. [Google Scholar] [CrossRef]
- Nhenmachena, C.; Nhamo, L.; Matchaya, G.; Nhemachena, C.R.; Muchara, B.; Karuaihe, S.T.; Mpandeli, S. Climate change impacts on water and agriculture sectors in Southern Africa: Threats and opportunities for sustainable development. Water 2020, 12, 2673. [Google Scholar] [CrossRef]
- Crawford, S.E.; Brinkmann, M.; Ouellet, J.D.; Lehmkuhl, F.; Reicherter, K.; Schwarzbauer, J.; Bellanova, P.; Letmathe, P.; Blank, L.M.; Weber, R.; et al. Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health. J. Hazard. Mater. 2022, 421, 126691. [Google Scholar] [CrossRef]
- Wubaye, G.B.; Worqlul, T.; Worqlul, A.W.; Dile, Y.T.; Taye, M.T.; Haileslassie, A.; Zaitchik, B.; Birhan, D.A.; Adgo, E.; Mohammed, J.A.; et al. Trends in rainfall and temperature extremes in Ethiopia: Station and agro-ecological zone levels of analysis. Atmosphere 2023, 14, 483. [Google Scholar] [CrossRef]
- Ullah, W.; Karim, A.; Ullah, S.; Rehman, A.U.; Bibi, T.; Wang, G.J.; Ullah, S.; Bhatti, A.S.; Ali, G.; Abbas, A.; et al. An increasing trend in daily monsoon precipitation extreme indices over Pakistan and its relationship with atmosphere circulations. Front. Environ. Sci. 2023, 11, 1228817. [Google Scholar] [CrossRef]
- Wei, W.; Zou, S.; Duan, W.L.; Chen, Y.N.; Li, S.; Zhou, Y.Q. Spatiotemporal variability in extreme precipitation and associated large-scale climate mechanisms in Central Asia from 1950 to 2019. J. Hydrol. 2023, 620, 129417. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.N.; Wei, W.; Fang, G.H.; Duan, W.L. The increase in extreme precipitation and its proportion over global land. J. Hydrol. 2024, 628, 130456. [Google Scholar] [CrossRef]
- Haylock, M.R.; Peterson, T.C.; Alves, L.M.; Ambrizzi, T.; Anunciação, Y.M.T.; Báez, J.; Barros, V.R.; Berlato, M.A.; Bidegain, M.; Coronel, G.; et al. Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J. Clim. 2006, 19, 1490–1512. [Google Scholar] [CrossRef]
- Bürger, G.; Murdock, T.Q.; Werner, A.T.; Sobie, S.R.; Cannon, A.J. Downscaling extremes—An intercomparison of multiple statistical methods for present climate. J. Clim. 2012, 25, 4366–4388. [Google Scholar] [CrossRef]
- Huang, X.; Li, J.; Ma, X.F.; Wang, Y.H.; Abula, A. Change characteristics of extreme precipitation events in Central Asia in recent 60 years based on RClimDex model. Arid. Land Geogr. 2023, 46, 1039–1051. (In Chinese) [Google Scholar]
- Yang, X.; Xiao, W.; Li, X.; Yang, L.X.; Liang, L.H.; Zhang, Y.J. Change characteristics of extreme precipitation in Suining region based on RClimDex from 1961 to 2020. Meteorol. Hydrol. Marine Ins. 2024, 41, 50–53. (In Chinese) [Google Scholar]
- Zhang, X.; Yang, F. RclimDex (1.0) User manual. In Climate Research Branch Environment Canada; Downsivew: Toronto, ON, Canada, 2004. [Google Scholar]
- Brandi, A.; Balling, R.C.; Iñiguez, P.; Georgescu, M. Climatological trends of mean and extreme daily precipitation in Arizona (USA). J. Arid Environ. 2023, 219, 105083. [Google Scholar] [CrossRef]
- Costa, R.L.; de Mello Baptista, G.M.; Gomes, H.B.; dos Santos Silva, F.D.; da Rocha Júnior, R.L.; de Araújo Salvador, M.; Herdies, D.L. Analysis of climate extremes indices over northeast Brazil from 1961 to 2014. Weather Clim. Extrem. 2020, 28, 100254. [Google Scholar] [CrossRef]
- Malboosi, S.; Abbasi, F.; Pakdaman, M.; Javanshiri, Z. Investigation of changes in the extreme of temperature and precipitation in Iran in the last 60 years. J. Clim. Res. 2023, 1402, 163–178. [Google Scholar]
- Croitoru, A.E.; Chiotoroiu, B.C.; Todorova, V.I.; Torică, V. Changes in precipitation extremes on the Black Sea Western Coast. Glob. Planet. Chang. 2013, 102, 10–19. [Google Scholar] [CrossRef]
- Ndabagenga, D.M.; Yu, J.; Mbawala, J.R.; Ntigwaza, C.Y.; Juma, A.S. Climatic Indices’ Analysis on Extreme Precipitation for Tanzania Synoptic Stations. J. Geosci. Environ. Prot. 2023, 11, 182–208. [Google Scholar] [CrossRef]
- Ma, Q.R.; Lei, H.J.; Jia, F.; Sun, S.Y.; Yan, P.C.; Gu, Y.; Feng, G.L. Interannual variability of extreme precipitation in late summer over west China during 1961–2021. Front. Environ. Sci. 2023, 11, 1185776. [Google Scholar] [CrossRef]
- Li, Y.H.; Wu, Y.; Zhou, J.; Xiang, B.; He, J.X.; Huang, D.A. Characteristics of water vapor transport for extreme summer precipitation in the Eastern Southwest China and its impact mechanism. Atmosphere 2023, 14, 1328. [Google Scholar] [CrossRef]
- Zheng, G.W.; Li, Y.; Chen, Q.L.; Zhou, X.; Gao, G.L.; Li, M.G.; Duan, T. The increasing predominance of extreme precipitation in Southwest China since the late 1970s. Atmos. Ocean. Sci. Lett. 2022, 15, 100227. [Google Scholar] [CrossRef]
- Li, P.Y.; Yi, Q.; Gu, Z.J.; Wu, Y.K.; Li, M.L.; Yang, C.; Ji, K.K. Spatio-temporal variation characteristics of rainfall erosivity in Henan province. Sci. Soil Water Conserv. 2024, 22, 46–55. (In Chinese) [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Setianto, A.; Triandini, T. Comparison of kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis. J. Appl. Geol. 2013, 5, 21–29. [Google Scholar] [CrossRef]
- Banik, S.; Chanchary, F.H.; Khan, K.; Rouf, R.A.; Anwer, M. Neural network and genetic algorithm approaches for forecasting Bangladeshi monsoon rainfall. In Proceedings of the International Conference on Computer and Information Technology (ICCIT), Khulna, Bangladesh, 24–27 December 2008; pp. 735–740. [Google Scholar]
- Seenu, P.Z.; Jayakumar, K.V. Comparative study of innovative trend analysis technique with Mann-Kendall tests for extreme rainfall. Arab. J. Geosci. 2021, 14, 636. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Wang, W.S.; Ding, J.; Li, Y.Q. Wavelet Analysis in Hydrology; Chemical Industry Press Beijing: Beijing, China, 2005; pp. 210–217. (In Chinese) [Google Scholar]
- De Moortel, I.; Munday, S.A.; Hood, A.W. Wavelet analysis: The effect of varying basic wavelet parameters. Sol. Phys. 2004, 222, 203–228. [Google Scholar] [CrossRef]
- Labat, D. Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol. 2005, 314, 275–288. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Liu, Z.Y.; Zhu, J.; Cobb, K.M. A review of Paleo El Nino-Southern Oscillation. Atmosphere 2018, 9, 130. [Google Scholar] [CrossRef]
- Singh, J.; Ashfag, M.; Skinner, C.B.; Anderson, W.B.; Mishra, V.; Singh, D. Enhanced risk of concurrent regional droughts with increased ENSO variability and warming. Nat. Clim. Chang. 2022, 12, 163. [Google Scholar] [CrossRef]
- Leal, W.; Nagy, G.F.; Martinho, F.; Saroar, M.; Erache, M.G.; Primo, A.L.; Pardal, M.A.; Li, C.L. Influences of climate change and variability on estuarine ecosystems: An impact study in selected European, South American and Asian countries. Int. J. Environ. Res. Public Health 2022, 19, 585. [Google Scholar] [CrossRef] [PubMed]
- Gulizia, C.; Pirotte, M.N. Characterization of simulated extreme El Nino events and projected impacts on South American climate extremes by a set of Coupled Model Intercomparison Project Phase 5 global climate models. Int. J. Climatol. 2022, 42, 48–62. [Google Scholar] [CrossRef]
- He, J.; Li, B.S.; Yu, Y.; Sun, L.X.; Zhang, H.Y.; Malik, I.; Wistuba, M.; Yu, R.D. Temporal variability of temperature, precipitation and drought indices in Hyper-Arid Region of Northwest China for the past 60 years. Atmosphere 2022, 13, 1561. [Google Scholar] [CrossRef]
- Cheng, S.J.; Wang, S.S.; Li, M.C.; He, Y.L. Summer heatwaves in China during 1961–2021: The impact of humidity. Atmos. Res. 2024, 304, 107366. [Google Scholar] [CrossRef]
- Xu, C.Y.; Li, S.H.; Lin, Y.L.; Fan, H.X. Projection of disaster-causing risk of extreme precipitation in the Yangtze River Basin based on CMIP6. Hydrol. Res. 2023, 54, 401–417. [Google Scholar] [CrossRef]
- Jiang, Y.; He, X.G.; Li, J.J. On the response of daily precipitation extremes to local mean temperature in the Yangtze River basin. Atmos. Res. 2024, 300, 107265. [Google Scholar] [CrossRef]
- Chen, J.H.; Li, Y.; Xiong, B.; Wang, Y.F.; Zhou, S.S.; Huang, Y.P. Comparison of moisture sources of summer precipitation in 1998 and 2020 in the middle and lower reaches of Yangtze River basin. Int. J. Climatol. 2023, 43, 3493–3505. [Google Scholar] [CrossRef]
- Wang, C.X.; Chen, C.; Zhang, S.Q.; Ma, Z.F.; Pang, Y.M. Variation characteristics of extreme climate events in Southwest China from 1961 to 2017. Heliyon 2023, 9, e19648. [Google Scholar] [CrossRef]
- Chen, H.Z.; Yin, X.H.; Huang, X.Y.; Zhao, E.R.; Ou, X.F.; Ye, C.Z. Climatic characteristics and main weather patterns of extreme precipitation in the middle Yangtze River valley. J. Water Clim. Chang. 2024, 5, 192–208. [Google Scholar] [CrossRef]
- Cheng, Q.P.; Jin, H.Y.; Ren, Y.T. Persistent and nonpersistent regional extreme total, daytime, and night-time precipitation events over southwest China (1961–2019). Int. J. Climatol. 2023, 43, 2150–2174. [Google Scholar] [CrossRef]
- Lei, S.Y.; Yu, S.J.; Sun, J.L.; Wang, Z.X.; Liao, Y.Z. A methodology for the prediction of extreme precipitation in complex terrains: A case study of central Southwest China. Water 2024, 16, 427. [Google Scholar] [CrossRef]
- Jiang, R.Y.; Cui, X.P.; Lin, J.; Tian, J. 40-year statistics of warm-season extreme hourly precipitation over Southwest China. J. Appl. Meteorol. Clim. 2023, 62, 1891–1908. [Google Scholar] [CrossRef]
- Zhai, P.M.; Wang, C.C.; Li, W. A review on study of change in precipitation extremes. Adv. Clim. Chang. Res. 2007, 3, 144–148. (In Chinese) [Google Scholar]
- Huang, Y.Q.; Xia, X.; Zhang, T.; Jiang, H.L.; Xia, H.Y.; Xu, A.Q.; Xu, J.Y. Multi-temporal and time-lag responses of terrestrial net ecosystem productivity to extreme climate from 1981 to 2019 in China. Remote Sens. 2024, 16, 163. [Google Scholar] [CrossRef]
- Amri, A.; Zakaria, S.; Rachid, A. Modeling two-phase flow with hysteresis: Comparative study of hysteresis models and application. Rock Mech. Rock Eng. 2023, 6, 1–22. [Google Scholar] [CrossRef]
- Saeed, S.; Kucharski, F.; Almazroui, M. Impacts of mid-latitude circulation on winter temperature variability in the Arabian Peninsula: The explicit role of NAO. Clim. Dynam. 2023, 60, 147–164. [Google Scholar] [CrossRef]
- Ben, C.; Friederike, O.; Rupert, S.S.; Luke, H. Extreme weather impacts of climate change: An attribution perspective. Environ. Res. Clim. 2022, 1, 012001. [Google Scholar]
- Hossein, T. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar]
- Song, F.F.; Zhang, G.J.; Ramanathan, V.; Leung, L.R. Trends in surface equivalent potential temperature: A more comprehensive metric for global warming and weather extremes. Proc. Natl. Acad. Sci. USA 2022, 119, e2117832119. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Vollarini, G.; Wasko, C.; Tramblay, Y. Changes in the climate system dominate inter-annual variability in flooding across the globe. Geophys. Res. Lett. 2024, 51, e2023GL107480. [Google Scholar] [CrossRef]
- Masood, M.U.; Haider, S.; Rashid, M.; Aldlemy, M.S.; Pande, C.B.; Durin, B.; Homod, R.Z.; Alshehri, F.; Elkhrachy, I. Quantifying the impacts of climate and land cover changes on the hydrological regime of a complex dam catchment area. Sustainability 2023, 15, 15223. [Google Scholar] [CrossRef]
- Amit, R.; Dilip, K.; Bhishm, S.K. A review on climate change impacts, models, and its consequences on different sectors: A systematic approach. J. Water Clim. Chang. 2023, 15, 104. [Google Scholar]
- Hossein, T.; Patrick, W. Global risk assessment of compound hot-dry events in the context of future climate change and socioeconomic factors. Clim. Atmos. Sci. 2023, 6, 74. [Google Scholar]
- Bijan, F.; Emmanuele, R.; Christoph, M.; Peter, H.; Lulii, D.; Fred, F.H. Anthropogenic influence on extreme temperature and precipitation in Central Asia. Sci. Rep. 2023, 13, 6854. [Google Scholar]
- Zhao, G.Y.; Han, Y.; Liu, M.H.; Hou, J.L.; Shi, H.P.; Liu, W.Z.; Guo, Y.L.; Qiao, Q. Spatial-temporal variation of extreme precipitation events in Henan Province from 1961 to 2013. Res. Soil Water Conserv. 2018, 25, 115–125. (In Chinese) [Google Scholar]
- Zhai, P.M.; Zhang, X.B.; Wan, H.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
Abbreviation | Index Name | Index Definition | Unit |
---|---|---|---|
CDD | Continuous dry days | The maximum number of days of daily precipitation < 1 mm | d |
CWD | Continuous wet days | The maximum number of days of daily precipitation > 1 mm | d |
PRCPTOT | Annual precipitation | The sum of precipitation in a year | mm |
R20mm | Number of heavy-rain days | The number of days with daily precipitation ≥ 20 mm | d |
R95p | Heavy precipitation | Annual accumulated precipitation mm > the 95% quantile of daily precipitation | mm |
R99p | Extremely strong precipitation | Annual accumulated precipitation mm of daily precipitation > 99% quantile | mm |
Rx1day | Maximum daily precipitation | Maximum precipitation for 1 day per month | mm |
Rx5day | Maximum precipitation for 5 consecutive days | Maximum precipitation for 5 consecutive days per month | mm |
SDII | Precipitation intensity | The ratio of total annual precipitation to daily precipitation ≥ the number of days with 1 mm | mm/d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Z.; Li, Y.; Qin, M.; Ji, K.; Yi, Q.; Li, P.; Feng, D. Spatiotemporal Variation Characteristics of Extreme Precipitation in Henan Province Based on RClimDex Model. Atmosphere 2024, 15, 1399. https://doi.org/10.3390/atmos15111399
Gu Z, Li Y, Qin M, Ji K, Yi Q, Li P, Feng D. Spatiotemporal Variation Characteristics of Extreme Precipitation in Henan Province Based on RClimDex Model. Atmosphere. 2024; 15(11):1399. https://doi.org/10.3390/atmos15111399
Chicago/Turabian StyleGu, Zhijia, Yuemei Li, Mengchen Qin, Keke Ji, Qiang Yi, Panying Li, and Detai Feng. 2024. "Spatiotemporal Variation Characteristics of Extreme Precipitation in Henan Province Based on RClimDex Model" Atmosphere 15, no. 11: 1399. https://doi.org/10.3390/atmos15111399
APA StyleGu, Z., Li, Y., Qin, M., Ji, K., Yi, Q., Li, P., & Feng, D. (2024). Spatiotemporal Variation Characteristics of Extreme Precipitation in Henan Province Based on RClimDex Model. Atmosphere, 15(11), 1399. https://doi.org/10.3390/atmos15111399