Impact of Large-Scale Circulations on Ground-Level Ozone Variability over Eastern China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Empirical Orthogonal Function
2.3. Singular Value Decomposition
3. Results
3.1. Spatiotemporal Patterns of Ground-Level Ozone
3.2. Dominant Circulation Patterns Derived from EOF Analysis
3.3. SVD Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lei, R.; Zhu, F.; Cheng, H.; Liu, J.; Shen, C.; Zhang, C.; Xu, Y.; Xiao, C.; Li, X.; Zhang, J.; et al. Short-term effect of PM2.5/O3 on non-accidental and respiratory deaths in highly polluted area of China. Atmos. Pollut. Res. 2019, 10, 1412–1419. [Google Scholar] [CrossRef]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef]
- Sillman, S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- Shao, M.; Zhang, Y.; Zeng, L.; Tang, X.; Zhang, J.; Zhong, L.; Wang, B. Ground-level ozone in the Pearl River Delta and the roles of VOC and NOx in its production. J. Environ. Manag. 2009, 90, 512–518. [Google Scholar] [CrossRef]
- Sun, L.; Xue, L.; Wang, T.; Gao, J.; Ding, A.; Cooper, O.R.; Lin, M.; Xu, P.; Wang, Z.; Wang, X.; et al. Significant increase of summertime ozone at Mount Tai in Central Eastern China. Atmos. Chem. Phys. 2016, 16, 10637–10650. [Google Scholar] [CrossRef]
- Li, G.; Bei, N.; Cao, J.; Wu, J.; Long, X.; Feng, T.; Dai, W.; Liu, S.; Zhang, Q.; Tie, X. Widespread and persistent ozone pollution in eastern China during the non-winter season of 2015: Observations and source attributions. Atmos. Chem. Phys. 2017, 17, 2759–2774. [Google Scholar] [CrossRef]
- Lyu, X.P.; Zeng, L.W.; Guo, H.; Simpson, I.J.; Ling, Z.H.; Wang, Y.; Murray, F.; Louie, P.K.K.; Saunders, S.M.; Lam, S.H.M.; et al. Evaluation of the effectiveness of air pollution control measures in Hong Kong. Environ. Pollut. 2017, 220, 87–94. [Google Scholar] [CrossRef]
- Li, Y.; Lau, A.K.; Fung, J.C.; Zheng, J.; Liu, S. Importance of NOx control for peak ozone reduction in the Pearl River Delta region. J. Geophys. Res. Atmos. 2013, 118, 9428–9443. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T. Worsening urban ozone pollution in China from 2013 to 2017—Part 2: The effects of emission changes and implications for multi-pollutant control. Atmos. Chem. Phys. 2020, 20, 6323–6337. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Zhu, J.; Shah, V.; Shen, L.; Bates, K.H.; Zhang, Q.; Zhai, S. A two-pollutant strategy for improving ozone and particulate air quality in China. Nat. Geosci. 2019, 12, 906–910. [Google Scholar] [CrossRef]
- Lou, S.; Liao, H.; Zhu, B. Impacts of aerosols on surface-layer ozone concentrations in China through heterogeneous reactions and changes in photolysis rates. Atmos. Environ. 2014, 85, 123–138. [Google Scholar] [CrossRef]
- Xing, J.; Wang, J.; Mathur, R.; Wang, S.; Sarwar, G.; Pleim, J.; Hogrefe, C.; Zhang, Y.; Jiang, J.; Wong, D.C. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates. Atmos. Chem. Phys. 2017, 17, 9869–9883. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y. Ozone deterioration over North China plain caused by light absorption of black carbon and organic carbon. Atmos. Environ. 2023, 313, 120048. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Xie, Z.; Hu, B.; Wang, L.; Bao, F.; Fan, S. The impact of the aerosol reduction on the worsening ozone pollution over the Beijing-Tianjin-Hebei region via influencing photolysis rates. Sci. Total Environ. 2022, 821, 153197. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.; Liao, H.; Zhu, J.; Wang, W.; Li, X. Impacts of aerosol–photolysis interaction and aerosol–radiation feedback on surface-layer ozone in North China during multi-pollutant air pollution episodes. Atmos. Chem. Phys. 2022, 22, 4101–4116. [Google Scholar] [CrossRef]
- Han, H.; Liu, J.; Shu, L.; Wang, T.; Yuan, H. Local and synoptic meteorological influences on daily variability in summertime surface ozone in eastern China. Atmos. Chem. Phys. 2020, 20, 203–222. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, B.; Huang, F.; Wang, X.; Sarkar, S.; Jia, S.; Deng, X.; Chen, D.; Shao, M. The role of natural factors in constraining long-term tropospheric ozone trends over Southern China. Atmos. Environ. 2020, 220, 117060. [Google Scholar] [CrossRef]
- Shu, L.; Xie, M.; Wang, T.; Gao, D.; Chen, P.; Han, Y.; Li, S.; Zhuang, B.; Li, M. Integrated studies of a regional ozone pollution synthetically affected by subtropical high and typhoon system in the Yangtze River Delta region, China. Atmos. Chem. Phys. 2016, 16, 15801–15819. [Google Scholar] [CrossRef]
- Wie, J.; Moon, B.-K. Impact of the Western North Pacific Subtropical High on summer surface ozone in the Korean Peninsula. Atmos. Pollut. Res. 2018, 9, 655–661. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Y. Influence of the West Pacific subtropical high on surface ozone daily variability in summertime over eastern China. Atmos. Environ. 2017, 170, 197–204. [Google Scholar] [CrossRef]
- Tu, J.; Xia, Z.-G.; Wang, H.; Li, W. Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China. Atmos. Res. 2007, 85, 310–337. [Google Scholar] [CrossRef]
- Zhu, B.; Hou, X.; Kang, H. Analysis of the seasonal ozone budget and the impact of the summer monsoon on the northeastern Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 2029–2042. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Huang, X.; Pu, X.; Li, M.; Chen, P.; Yang, X.-Q.; Wang, M. Impact of East Asian summer monsoon on surface ozone pattern in China. J. Geophys. Res. Atmos. 2018, 123, 1401–1411. [Google Scholar] [CrossRef]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B.; Trendafilov, N. In search of simple structures in climate: Simplifying EOFs. Int. J. Climatol. 2006, 26, 7–28. [Google Scholar] [CrossRef]
- Fukuoka, A. A study of 10-day forecast (a synthetic report). Geophys. Mag. 1951, 22, 177–218. [Google Scholar]
- Pritchard, M.S.; Somerville, R.C. Empirical orthogonal function analysis of the diurnal cycle of precipitation in a multi-scale climate model. Geophys. Res. Lett. 2009, 36, 126–127. [Google Scholar] [CrossRef]
- Hassanzadeh, S.; Kiasatpour, A.; Hosseinibalam, F. Statistical techniques analysis of SST and SLP in the Persian Gulf. Physical A 2007, 382, 586–596. [Google Scholar] [CrossRef]
- Shabbar, A.; Skinner, W. Summer drought patterns in Canada and the relationship to global sea surface temperatures. J. Clim. 2014, 17, 2866–2880. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Qu, K.; Ding, J.; Shang, Y.; Liu, H.; Wei, M. Characteristics of Ozone Pollution, Regional Distribution and Causes during 2014–2018 in Shandong Province, East China. Atmosphere 2019, 10, 501. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, Y.; Li, B.W.; Wang, Y.L.; Xiao, B.; Yan, L.; Liu, S. Characteristics of temporal and spatial variations of ozone and it’s influencing factor over Xi’an during 2013–2016. J. Earth Environ. 2017, 8, 541–551. [Google Scholar]
- Wang, Z.; Li, Y.; Chen, T.; Zhang, D.; Sun, F.; Sun, R.; Dong, X.; Sun, N.; Pan, L. Temporal and spatial distribution characteristics of ozone in Beijing. Huan Jing Ke Xue 2014, 35, 4446–4453. [Google Scholar] [PubMed]
- Hou, X.W.; Zhu, B.; Fei, D.D.; Wang, D.D. The impacts of summer monsoons on the ozone budget of the atmospheric boundary layer of the Asia-Pacific region. Sci. Total Environ. 2015, 502, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, C.; Tao, J.; Wang, Z.; Si, Y.; Cheng, L.; Wang, H.; Zhu, S.; Chen, L. Spatio-Temporal Characteristics of Tropospheric Ozone and Its Precursors in Guangxi, South China. Atmosphere 2018, 9, 355. [Google Scholar] [CrossRef]
- Wang, T.; Cheung, V.T.; Lam, K.S.; Kok, G.L.; Harris, J.M. The characteristics of ozone and related compounds in the boundary layer of the South China coast: Temporal and vertical variations during autumn season. Atmos. Environ. 2001, 35, 2735–2746. [Google Scholar] [CrossRef]
- Lee, Y.C.; Wenig, M.; Yang, X. The emergence of urban ozone episodes in autumn and air temperature rise in Hong Kong. Air Quality. Atmos. Health 2009, 2, 111–121. [Google Scholar] [CrossRef]
- Tanimoto, H.; Sawa, Y.; Matsueda, H.; Uno, I.; Yonemura, S. Significant latitudinal gradient in the surface ozone spring maximum over east Asia. Geophys. Res. Lett. 2005, 32, 21805. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling Errors in the Estimation of Empirical Orthogonal Functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Kegley SA, J.; Herring, S.D.; Clough, D.C. Influence of cloud cover on surface ozone concentrations during the East Asian monsoon. Atmos. Chem. Phys. 2008, 8, 1069–1080. [Google Scholar]
- Kettle, A.S.K.; Armitage, D.A.L.; Ruuskanen, T.C.H. The role of clouds in the ozone chemistry of the atmosphere. Nat. Commun. 2015, 6, 7478. [Google Scholar]
- Zhou, D.; Ding, A.; Mao, H.; Fu, C.; Wang, T.; Chan, L.Y.; Ding, K.; Zhang, Y.; Liu, J.; Lu, A.; et al. Impacts of the East Asian monsoon on lower tropospheric ozone over coastal South China. Environ. Res. Lett. 2013, 8, 044011. [Google Scholar] [CrossRef]
- Yang, Y.; Liao, H.; Li, J. Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China. Atmos. Chem. Phys. 2014, 14, 6867–6879. [Google Scholar] [CrossRef]
- Sui, C.H.; Chung, P.H.; Li, T. Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett. 2007, 34, L11701. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, H.; Zhou, W.; Ma, J. Recent changes in the summer precipitation pattern in east china and the background circulation. Clim. Dyn. 2011, 36, 1463–1473. [Google Scholar] [CrossRef]
- Peng, J.B. An Investigation of the Formation of the Heat Wave in Southern China in Summer 2013 and the Relevant Abnormal Subtropical High Activities. Atmos. Ocean. Sci. Lett. 2014, 7, 286–290. [Google Scholar]
- Huang, X.; Ding, A.; Wang, Z.; Ding, K.; Gao, J.; Chai, F.; Fu, C. Amplified transboundary transport of haze by aerosol–boundary layer interaction in China. Nat. Geosci. 2020, 13, 428–434. [Google Scholar] [CrossRef]
- Liao, Z.H.; Meng, G.; Sun, J.R.; Fan, S.J. The impact of synoptic circulation on air quality and pollution-related human health in the Yangtze River Delta region. Sci. Total Environ. 2017, 607, 838–846. [Google Scholar] [CrossRef]
- Liu, C.M.; Yeh, M.T.; Paul, S.; Lee, Y.C.; Jacob, D.J.; Fu, M.; Woo, J.H.; Carmichael, G.R.; Streets, D.G. Effect of anthropogenic emissions in East Asia on regional ozone levels during spring cold continental outbreaks near Taiwan: A case study. Environ. Model. Softw. 2007, 23, 579–591. [Google Scholar] [CrossRef]
- Chiang, C.-K.; Fan, J.-F.; Li, J.; Chang, J.S. Impact of Asian continental outflow on the springtime ozone mixing ratio in northern Taiwan. J. Geophys. Res. 2009, 114, D24304. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, Y. Impact of Large-Scale Circulations on Ground-Level Ozone Variability over Eastern China. Atmosphere 2024, 15, 1400. https://doi.org/10.3390/atmos15121400
Li J, Li Y. Impact of Large-Scale Circulations on Ground-Level Ozone Variability over Eastern China. Atmosphere. 2024; 15(12):1400. https://doi.org/10.3390/atmos15121400
Chicago/Turabian StyleLi, Jinlan, and Ying Li. 2024. "Impact of Large-Scale Circulations on Ground-Level Ozone Variability over Eastern China" Atmosphere 15, no. 12: 1400. https://doi.org/10.3390/atmos15121400
APA StyleLi, J., & Li, Y. (2024). Impact of Large-Scale Circulations on Ground-Level Ozone Variability over Eastern China. Atmosphere, 15(12), 1400. https://doi.org/10.3390/atmos15121400