Trend Projections of Potential Evapotranspiration in Yangtze River Delta and the Uncertainty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outputs of GCMs
2.2. Observed Meteorological Datasets
2.3. Bias Correction
2.4. ETp Calculation
2.5. Uncertainty Estimation and Decomposition
2.6. SNR
2.7. Studying Route
3. Results
3.1. Performance of GCMs
3.2. Performance of Bias Correction Methods
3.3. Temperature Projections
3.4. Uncertainty of Temperature Projections
3.5. Performance of the Empirical ETp Calculation Formulas
3.6. ETp Projections
3.7. Uncertainty of ETp Projections
3.8. Discussion
4. Conclusions
- (1)
- Temperature
- (1.1)
- In comparison with 1971~2000, the temperature increases are, respectively, 1.63~1.92 °C and 2.19~4.41 °C during 2021~2050 and 2061~2090.
- (1.2)
- The total uncertainty of temperature projections is dominantly contributed by the main effect of GCM (90~91%) during 2021~2050, and mainly by the main effect of emission scenarios (51~55%) and followed by the main effect of GCM (41~44%) during 2061~2090.
- (1.3)
- The temperature projections are robust and reliable for the two projection periods.
- (2)
- ETp
- (2.1)
- In comparison with 1971~2000, the ETp will increase by 0.14~0.17 mm d−1 during 2021~2050 and by 0.21~0.41 mm d−1 during 2061~2090, respectively. This will lead to higher demand for evapotranspiration and may result in more constrictive water management.
- (2.2)
- The total uncertainty of ETp projections is dominantly contributed by the main effect of GCM (63%) and followed by the main effect of the ETp calculation formula (24%) during 2021~2050, and mainly contributed by the main effect of GCM (36%) and then by the main effects of emission scenarios (34%) and the ETp calculation formula (18%) during 2061~2090.
- (2.3)
- The ETp projections are relatively robust and reliable in the two projection periods.
- (3)
- The robustness of response projections usually decreases with the extension of the impact modeling chain (e.g., the SNR of ETp projections is obviously lower than that of temperature projections). Therefore, appropriate attention may be paid to the length of the impact modeling chain when making similar response projections to climate change.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, G.; Wu, Z.; He, H. Hydrologic Cycle Process and Quantitative Prediction (in Chinese); Science Press: Beijing, China, 2010. [Google Scholar]
- Lu, G.; Wu, Z.; He, H. Hydrological Cycle Processes and Quantitative Forecasting; Science Press: Beijing, China, 2010. [Google Scholar]
- WMO. Sites for Wind-Power Installations Report of a Working Group of the Commission for Aerology; WMO: Geneva, Switzerland, 1964. [Google Scholar]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—A review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Makkink, G. Testing the Penman Formula by Means of Lysimeters. J. Inst. Water Eng. 1957, 11, 277–288. [Google Scholar]
- Monteith, J.L. Evaporation and surface temperature. Q. J. R. Meteorol. Soc. 1981, 107, 1–27. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the UN: Rome, Italy, 1998; p. 301. [Google Scholar]
- Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Andréassian, V.; Anctil, F.; Loumagne, C. Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol. 2005, 303, 290–306. [Google Scholar] [CrossRef]
- Trajkovic, S. Hargreaves versus Penman-Monteith under Humid Conditions. J. Irrig. Drain. Eng. 2007, 133, 38–42. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 4–5. [Google Scholar]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Song, Y.H.; Chung, E.-S.; Shahid, S. Uncertainties in evapotranspiration projections associated with estimation methods and CMIP6 GCMs for South Korea. Sci. Total Environ. 2022, 825, 153953. [Google Scholar] [CrossRef]
- Kingston, D.G.; Todd, M.C.; Taylor, R.G.; Thompson, J.R.; Arnell, N.W. Uncertainty in the estimation of potential evapotranspiration under climate change. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef]
- Shi, L.; Feng, P.; Wang, B.; Li Liu, D.; Cleverly, J.; Fang, Q.; Yu, Q. Projecting potential evapotranspiration change and quantifying its uncertainty under future climate scenarios: A case study in southeastern Australia. J. Hydrol. 2020, 584, 124756. [Google Scholar] [CrossRef]
- Lai, C.; Chen, X.; Zhong, R.; Wang, Z. Implication of climate variable selections on the uncertainty of reference crop evapotranspiration projections propagated from climate variables projections under climate change. Agric. Water Manag. 2022, 259, 107273. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- O’Neill, B.; Kriegler, E.; Ebi, K.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.; van Ruijven, B.; Vuuren, D.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 2015, 42, 169–180. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, Y.; Tang, J. Compound wind and precipitation extremes at a global scale based on CMIP6 models: Evaluation, projection and uncertainty. Int. J. Climatol. 2023, 43, 7588–7605. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J. Uncertainty in Projection of Climate Extremes: A Comparison of CMIP5 and CMIP6. J. Meteorol. Res. 2021, 35, 17. [Google Scholar] [CrossRef]
- Lehner, F.; Deser, C.; Maher, N.; Marotzke, J.; Fischer, E.; Brunner, L.; Knutti, R.; Hawkins, E. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn. 2020, 11, 491–508. [Google Scholar] [CrossRef]
- John, A.; Douville, H.; Ribes, A.; Yiou, P. Quantifying CMIP6 model uncertainties in extreme precipitation projections. Weather Clim. Extrem. 2022, 36, 100435. [Google Scholar] [CrossRef]
- Hausfather, Z.; Peters, G. Emissions—The ‘business as usual’ story is misleading. Nature 2020, 577, 618–620. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; et al. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Hausfather, Z.; Peters, G.P. RCP8.5 is a problematic scenario for near-term emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 27791–27792. [Google Scholar] [CrossRef]
- Burgess, M.G.; Ritchie, J.; Shapland, J.; Pielke, R. IPCC baseline scenarios have over-projected CO2 emissions and economic growth. Environ. Res. Lett. 2021, 16, 014016. [Google Scholar] [CrossRef]
- Fan, X.; Duan, Q.; Shen, C.; Wu, Y.; Xing, C. Global surface air temperatures in CMIP6: Historical performance and future changes. Environ. Res. Lett. 2020, 15, 104056. [Google Scholar] [CrossRef]
- Fan, X.; Miao, C.; Duan, Q.; Shen, C.; Wu, Y. The Performance of CMIP6 Versus CMIP5 in Simulating Temperature Extremes Over the Global Land Surface. J. Geophys. Res. Atmos. 2020, 125, e2020JD033031. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Leconte, R. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol. 2011, 401, 190–202. [Google Scholar] [CrossRef]
- Cannon, A.; Sobie, S.; Murdock, T. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 150722131126009. [Google Scholar] [CrossRef]
- Cannon, A.J. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 2018, 50, 31–49. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, J.; Zhang, X.; Shen, M.; Chen, H.; Guo, S. A new two-stage multivariate quantile mapping method for bias correcting climate model outputs. Clim. Dyn. 2019, 53, 3603–3623. [Google Scholar] [CrossRef]
- Bárdossy, A.; Pegram, G.G.S. Copula based multisite model for daily precipitation simulation. Hydrol. Earth Syst. Sci. 2009, 13, 2299–2314. [Google Scholar] [CrossRef]
- Rüschendorf, L. On the distributional transform, Sklar’s theorem, and the empirical copula process. J. Stat. Plan. Inference 2009, 139, 3921–3927. [Google Scholar] [CrossRef]
- Li, X.; Babovic, V. Multi-site multivariate downscaling of global climate model outputs: An integrated framework combining quantile mapping, stochastic weather generator and Empirical Copula approaches. Clim. Dyn. 2019, 52, 5775–5799. [Google Scholar] [CrossRef]
- Li, X.; Babovic, V. A new scheme for multivariate, multisite weather generator with inter-variable, inter-site dependence and inter-annual variability based on empirical copula approach. Clim. Dyn. 2019, 52, 2247–2267. [Google Scholar] [CrossRef]
- Schmidli, J.; Frei, C.; Vidale, P.L. Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol. 2006, 26, 679–689. [Google Scholar] [CrossRef]
- Mpelasoka, F.S.; Chiew, F.H.S. Influence of Rainfall Scenario Construction Methods on Runoff Projections. J. Hydrometeorol. 2009, 10, 1168–1183. [Google Scholar] [CrossRef]
- Waheed, S.Q.; Grigg, N.S.; Ramirez, J.A. Nonstationary-Probabilistic Framework to Assess the Water Resources System Vulnerability: Long-Term Robust Planning and Timing. J. Water Resour. Plan. Manag. 2021, 147, 05021010. [Google Scholar] [CrossRef]
- Tokarska, K.B.; Stolpe, M.B.; Sippel, S.; Fischer, E.M.; Smith, C.J.; Lehner, F.; Knutti, R. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 2020, 6, eaaz9549. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Myers, T.A.; McCoy, D.T.; Po-Chedley, S.; Caldwell, P.M.; Ceppi, P.; Klein, S.A.; Taylor, K.E. Causes of Higher Climate Sensitivity in CMIP6 Models. Geophys. Res. Lett. 2020, 47, e2019GL085782. [Google Scholar] [CrossRef]
- Kay, A.L.; Davies, H.N. Calculating potential evaporation from climate model data: A source of uncertainty for hydrological climate change impacts. J. Hydrol. 2008, 358, 221–239. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.H. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Xu, C.Y.; Singh, V.P. Evaluation and generalization of temperature-based methods for calculating evaporation. Hydrol. Process. 2001, 15, 305–319. [Google Scholar] [CrossRef]
- DehghaniSanij, H.; Yamamoto, T.; Rasiah, V. Assessment of evapotranspiration estimation models for use in semi-arid environments. Agric. Water Manag. 2004, 64, 91–106. [Google Scholar] [CrossRef]
- Lu, J.; Sun, G.; McNulty, S.G.; Amatya, D.M. A comparison of six potential evapotranspiration methods for regional use in the southeastern united states1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 621–633. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Thompson, J.R.; Green, A.J.; Kingston, D.G. Potential evapotranspiration-related uncertainty in climate change impacts on river flow: An assessment for the Mekong River basin. J. Hydrol. 2014, 510, 259–279. [Google Scholar] [CrossRef]
- Xu, C.Y.; Singh, V.P. Cross Comparison of Empirical Equations for Calculating Potential Evapotranspiration with Data from Switzerland. Water Resour. Manag. 2002, 16, 197–219. [Google Scholar] [CrossRef]
- Xu, C.Y.; Singh, V.P. Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrol. Process. 2000, 14, 339–349. [Google Scholar] [CrossRef]
- Roberts, J.; Snelgrove, K. Uncertainty in Regional Climate Model Mean Runoff Projections under Climate Change: Case Study of Labrador’s Churchill River Basin. Atmos.-Ocean 2015, 53, 319–331. [Google Scholar] [CrossRef]
- Troin, M.; Arsenault, R.; Martel, J.-L.; Brissette, F. Uncertainty of Hydrological Model Components in Climate Change Studies over Two Nordic Quebec Catchments. J. Hydrometeorol. 2017, 19, 27–46. [Google Scholar] [CrossRef]
- Chegwidden, O.S.; Nijssen, B.; Rupp, D.E.; Arnold, J.R.; Clark, M.P.; Hamman, J.J.; Kao, S.-C.; Mao, Y.; Mizukami, N.; Mote, P.W.; et al. How Do Modeling Decisions Affect the Spread Among Hydrologic Climate Change Projections? Exploring a Large Ensemble of Simulations Across a Diversity of Hydroclimates. Earth’s Future 2019, 7, 623–637. [Google Scholar] [CrossRef]
- Fisher, R.A. The correlation between relatives on the supposition of Mendelian inheritance. Earth Environ. Sci. Trans. R. Soc. Edinb. 1918, 52, 399–433. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 2009, 90, 1095–1108. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.; Lucas-Picher, P. Assessing the limits of bias correcting climate model outputs for climate change impact studies. J. Geophys. Res. Atmos. 2015, 120, 1123–1136. [Google Scholar] [CrossRef]
- Hui, Y.; Chen, J.; Xu, C.-Y.; Xiong, L.; Chen, H. Bias nonstationarity of global climate model outputs: The role of internal climate variability and climate model sensitivity. Int. J. Climatol. 2019, 39, 2278–2294. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Zhang, X.J.; Chen, H.; Guo, S.; Zhao, Y. Bias correcting climate model multi-member ensembles to assess climate change impacts on hydrology. Clim. Change 2019, 153, 361–377. [Google Scholar] [CrossRef]
- Matthews, J.B.R.; Möller, V.; van Diemen, R.; Fuglestvedt, J.S.; Masson-Delmotte, V.; Méndez, C.; Semenov, S.; Reisinger, A. (Eds.) Annex VII: Glossary in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 2215–2256. [Google Scholar]
- Thomas, A. Spatial and temporal characteristics of potential evapotranspiration trends over China. Int. J. Climatol. 2000, 20, 381–396. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A. Potential evapotranspiration and continental drying. Nat. Clim. Chang. 2016, 6, 946–949. [Google Scholar] [CrossRef]
- Guo, D.; Westra, S.; Maier, H.R. Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones. Hydrol. Earth Syst. Sci. 2017, 21, 2107–2126. [Google Scholar] [CrossRef]
- Tomas-Burguera, M.; Vicente-Serrano, S.M.; Peña-Angulo, D.; Domínguez-Castro, F.; Noguera, I.; El Kenawy, A. Global Characterization of the Varying Responses of the Standardized Precipitation Evapotranspiration Index to Atmospheric Evaporative Demand. J. Geophys. Res. Atmos. 2020, 125, e2020JD033017. [Google Scholar] [CrossRef]
- Wang, W.; Xing, W.; Shao, Q. How large are uncertainties in future projection of reference evapotranspiration through different approaches? J. Hydrol. 2015, 524, 696–700. [Google Scholar] [CrossRef]
- Bosshard, T.; Carambia, M.; Goergen, K.; Kotlarski, S.; Krahe, P.; Zappa, M.; Schär, C. Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resour. Res. 2013, 49, 1523–1536. [Google Scholar] [CrossRef]
- Wang, H.-M.; Chen, J.; Xu, C.-Y.; Zhang, J.; Chen, H. A Framework to Quantify the Uncertainty Contribution of GCMs Over Multiple Sources in Hydrological Impacts of Climate Change. Earth’s Future 2020, 8, e2020EF001602. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Gu, L. Overall uncertainty of climate change impacts on watershed hydrology in China. Int. J. Climatol. 2021, 42, 507–520. [Google Scholar] [CrossRef]
Number | Name | Horizontal Resolution | Organization/Country (Region) |
---|---|---|---|
Longitude × Latitude | |||
1 | ACCESS-CM2 | 1.8750° × 1.25° | CSIRO-ARCCSS/Australia |
2 | ACCESS-ESM1-5 | 1.8750° × 1.25° | CSIRO/Australia |
3 | BCC-CSM2-MR | 1.125° × 1.1213° | BCC/China |
4 | CanESM5 | 2.8125° × 2.7893° | CCCma/Canada |
5 | CMCC-CM2-SR5 | 1.25° × 0.9424° | CMCC/Italy |
6 | CNRM-CM6-1 | 1.4063° × 1.4004° | CNRM-CERFACS/France |
7 | CNRM-ESM2-1 | 1.4063° × 1.4004° | CNRM-CERFACS/France |
8 | EC-Earth3 | 0.7031° × 0.7017° | EC-Earth-Consortium/European Union |
9 | EC-Earth3-Veg | 0.7031° × 0.7017° | EC-Earth-Consortium/European Union |
10 | FGOALS-g3 | 2° × 2.2785° | CAS/China |
11 | GFDL-ESM4 | 1.25° × 1° | NOAA-GFDL/America |
12 | HadGEM3-GC31-LL | 1.8750° × 1.25° | MOHC/England |
13 | INM-CM4-8 | 2° × 1.5° | INM/Russia |
14 | INM-CM5-0 | 2° × 1.5° | INM/Russia |
15 | IPSL-CM6A-LR | 2.5° × 1.2676° | IPSL/France |
16 | MIROC6 | 1.4063° × 1.4004° | MIROC/Japan |
17 | MIROC-ES2L | 2.8125° × 2.7893° | MIROC/Japan |
18 | MPI-ESM1-2-HR | 0.9375° × 0.9349° | MPI-M/Germany |
19 | MPI-ESM1-2-LR | 1.875° × 1.8647° | MPI-M/Germany |
20 | MRI-ESM2-0 | 1.1250° × 1.1213° | MRI/Japan |
21 | NESM3 | 1.875° × 1.8647° | NUIST/China |
22 | NorESM2-LM | 2.5° × 1.8947° | NCC/Norway |
23 | NorESM2-MM | 1.25° × 0.9424° | NCC/Norway |
24 | UKESM1-0-LL | 1.875° × 1.25° | MOHC/England |
Period | 2021~2050 | ||||||
Effect | S | G | B | SG | SB | GB | SGB |
TX/Magnitude/°C2 | 0.01 | 0.25 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
TN/Magnitude/°C2 | 0.01 | 0.21 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
TX/Relative contribution/% | 4.93 | 90.76 | 0.00 | 4.31 | 0.00 | 0.00 | 0.00 |
TN/Relative contribution/% | 5.58 | 89.68 | 0.00 | 4.75 | 0.00 | 0.00 | 0.00 |
Period | 2061~2090 | ||||||
Effect | S | G | B | SG | SB | GB | SGB |
TX/Magnitude/°C2 | 0.75 | 0.66 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 |
TN/Magnitude/°C2 | 0.79 | 0.60 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 |
TX/Relative contribution/% | 50.79 | 44.31 | 0.00 | 4.90 | 0.00 | 0.00 | 0.00 |
TN/Relative contribution/% | 55.06 | 41.30 | 0.00 | 3.64 | 0.00 | 0.00 | 0.00 |
Type | Period | S | G | B | E | SG | SB | SE | GB |
Magnitude/(mm d−1)2 | 2021~2050 | 0.0001 | 0.0025 | 0.0000 | 0.0010 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
2061~2090 | 0.0071 | 0.0077 | 0.0000 | 0.0042 | 0.0011 | 0.0000 | 0.0006 | 0.0000 | |
Relative contribution/% | 2021~2050 | 3.24 | 62.54 | 0.05 | 24.24 | 2.86 | 0.00 | 0.37 | 0.08 |
2061~2090 | 33.76 | 35.59 | 0.04 | 18.26 | 4.76 | 0.01 | 2.81 | 0.03 | |
Type | Period | GE | BE | SGB | SGE | SBE | GBE | SGBE | |
Magnitude/(mm d−1)2 | 2021~2050 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
2061~2090 | 0.0009 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | ||
Relative contribution/% | 2021~2050 | 5.93 | 0.05 | 0.02 | 0.51 | 0.00 | 0.09 | 0.02 | |
2061~2090 | 3.93 | 0.04 | 0.01 | 0.70 | 0.00 | 0.05 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Yu, Y.; Zhang, S. Trend Projections of Potential Evapotranspiration in Yangtze River Delta and the Uncertainty. Atmosphere 2024, 15, 357. https://doi.org/10.3390/atmos15030357
Ding L, Yu Y, Zhang S. Trend Projections of Potential Evapotranspiration in Yangtze River Delta and the Uncertainty. Atmosphere. 2024; 15(3):357. https://doi.org/10.3390/atmos15030357
Chicago/Turabian StyleDing, Lu, Yi Yu, and Shaobo Zhang. 2024. "Trend Projections of Potential Evapotranspiration in Yangtze River Delta and the Uncertainty" Atmosphere 15, no. 3: 357. https://doi.org/10.3390/atmos15030357
APA StyleDing, L., Yu, Y., & Zhang, S. (2024). Trend Projections of Potential Evapotranspiration in Yangtze River Delta and the Uncertainty. Atmosphere, 15(3), 357. https://doi.org/10.3390/atmos15030357