The Application of Aluminium Powder as an Accumulation Medium of Mercury from Air
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Instrumentation
2.3. Reagents
2.4. Calibration Standards
2.5. Mercury Experimental Set-Up
2.6. Treatment of Aluminium Foil for the Removal of the Al Oxide Layer
2.7. Treatment of Al Powder with Chromic Acid
2.8. Exposure of Chemically Treated Al Samples to Hg Vapour
2.9. Analysis of Samples
2.10. Scanning Electron Microscope Analysis for Surface Morphology
3. Results
3.1. Calibration of the Mercury Analyser
3.2. Validation and Reliability of the Hg Determination Results
3.3. Limit of Detection and Limit of Quantification
3.4. Surface Morphology of Treated Al Samples
3.5. Accumulation of Hg by Chemically Treated Al Foil as a Function of Time
3.6. Accumulation of Hg on Al Powder Treated with H2CrO4
3.7. Analysis of the Hg Analytical Peak Signal Obtained in Hg Adsorbed on H2CrO4 Al−Treated Powder
3.8. Application of Al Powder as an Indicator of Hg Pollution in Atmospheric Air
4. Discussion
4.1. Al Matrix Treatment Prior to Application as a Hg Pollution Monitor
4.2. Application of Al Powder as a Sampler of Hg from Air
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lavoie, R.A.; Jardine, T.D.; Chumchal, M.M.; Kidd, K.A.; Campbell, L.M. Biomagnification of mercury in aquatic food webs: A worldwide meta-analysis. Environ. Sci. Technol. 2013, 47, 13385–13394. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.S.; Greco, R.L.; Grivell, R.; Louise, J.; Deussen, A.; Dodd, J.; Moran, L.T. Awareness of Listeriosis and Methylmercury toxicity public health recommendations and diet during pregnancy. Women Birth 2019, 32, 65–70. [Google Scholar]
- Lee, J.; Hwang, G.; Naganuma, A.; Satoh, M. Methylmercury toxic mechanism related to protein degradation and chemokine transcription. Environ. Health Prev. Med. 2020, 25, 30. [Google Scholar] [CrossRef] [PubMed]
- ATSDR, Agency for Toxic Substances and Disease Registry. Substance Priority List. 2019. Available online: https://www.atsdr.cdc.gov/spl/index.html (accessed on 6 January 2020).
- Tibau, A.V.; Grube, B.D. Dental amalgam and the Minamata Convention on mercury treaty: Make mercury history for all. J. Oral Dent. Health 2023, 7, 227–241. [Google Scholar]
- Bjorkman, L.; Lundekvam, B.F.; Laegreid, T.; Bertelsen, B.I.; Morild, I.; Lilleng, P.; Lind, B.; Palm, B.; Vahter, M. Mercury in human brain, blood, muscle and toenails in relation to exposure: An autopsy study. Environ. Health 2007, 6, 30. [Google Scholar] [CrossRef]
- Bjorklund, G.; Peana, M.; Dadar, M.; Chirumbolo, S.; Aaseth, J.; Martins, N. Mercury-induced autoimmunity: Drifting from micro to macro concerns on autoimmune disorders. Clin. Immunol. 2020, 213, 108352. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Wang, F.; Luo, Z.; Guo, S.; Strahle, U. Toxicity of mercury: Molecular evidence. Chemosphere 2020, 245, 125586. [Google Scholar] [CrossRef]
- Dong, T.; Li, H. Neurological risks arising from the bioaccumulation of heavy metal contaminants: A focus on mercury. Environ. Toxicol. 2024, early view. [Google Scholar] [CrossRef]
- UN Environment. Global Mercury Assessment 2018; UN Environment Programme, Chemicals and Health Branch: Geneva, Switzerland, 2019. [Google Scholar]
- Grant, N. Legacy of the mad hatter. Environment 1969, 11, 18–44. [Google Scholar] [CrossRef]
- Waldron, H.A. Did the Mad Hatter have mercury poisoning? Br. Med. J. 1984, 287, 324–325. [Google Scholar] [CrossRef]
- Barret, J.R. An uneven path forward: The history of methylmercury toxicity research. Environ. Health Perspect. 2010, 118, A352–A353. [Google Scholar] [CrossRef] [PubMed]
- Manstromonaco, M.N. Mercury Cycling in the Global Marine Environment. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2016. [Google Scholar]
- Woolf, A.D. Three methylmercury poisoning disasters. In History of Morden Clinical Toxicology; Academic Press: London, UK, 2022; pp. 15–33. [Google Scholar]
- Manay, N. Mercury tragedies: Incidents and effects. Encycl. Toxicol. 2024, 6, 129–139. [Google Scholar]
- Bloom, J. Two Drops of Death: Dimethylmercury. American Council on Science and Health. 2016. Available online: www.acsh.org/news/2016/06/06/two-drops-of-death-dimethylmercury (accessed on 16 March 2020).
- Minamata Convention on Mercury. United Nations Environment Programme (UNEP). 2013. Available online: https://www.mercuryconvention.org/countires/parties (accessed on 16 March 2020).
- Pacyna, E.G.; Pacyna, J.M.; Fudala, J.; Strzelecka-Jastrzab, E.; Hlawiczka, S.; Panasiuk, D. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci. Total Environ. 2006, 370, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Pacyna, E.G.; Pacyna, J.M.; Sundseth, K.; Munthe, J.; Kindbom, K.; Wilson, S.; Steenhuisen, F.; Maxon, P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 2010, 44, 2487–2499. [Google Scholar] [CrossRef]
- Driscoll, C.J.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as global pollutant: Sources, pathways and effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Gustin, M.S.; Dunham-Cheatham, S.M.; Huang, J. Development of an understanding of reactive mercury in ambient air: A review. Atmosphere 2021, 12, 73. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Tripathee, L.; Yu, F.; Guo, J.; Yang, W.; Guo, J.; Kang, S.; Cao, J. Characteristics, sources, and health risk assessment of atmospheric particulate mercury in Guanzhong Basin. Environ. Pollut. 2024, 342, 123071. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.K.; Kim, K.; Brown, R.J.C. Measurement techniques for mercury species in ambient air. Trends Anal. Chem. 2011, 30, 899–917. [Google Scholar] [CrossRef]
- Berdonces, M.A.; Higueras, P.L.; Fernandez-Pascual, M.; Borreguero, A.M.; Carmona, M. The role of native lichens in the biomonitoring of gaseous mercury at contaminated sites. J. Environ. Manag. 2017, 186, 207–213. [Google Scholar] [CrossRef]
- Svanberg, S. Monitoring atmospheric atomic mercury by optical techniques. Atmosphere 2023, 14, 1124. [Google Scholar] [CrossRef]
- Božič, D.; Horvat, M. Insights into seasonal variations in mercury isotope composition of lichens. Environ. Pollut. 2024, 340, 122740. [Google Scholar] [CrossRef]
- Vannini, A.; Nicolardi, V.; Bargagli, R.; Loppi, S. Estimating atmospheric mercury concentrations with lichens. Environ. Sci. Technol. 2014, 48, 8754–8759. [Google Scholar] [CrossRef]
- Bargagli, R. Moss and Lichen biomonitoring of atmospheric mercury: A review. Sci. Total Environ. 2016, 572, 216–231. [Google Scholar] [CrossRef]
- Popa, M.M.C.; Rusănescu, C.O. The Efficiency of lichens in air biomonitoring in Teleorman County. Atmosphere 2023, 14, 1287. [Google Scholar] [CrossRef]
- Williams, L.; Colesie, C.; Ullmann, A.; Westberg, M.; Wedin, M.; Büdel, B. Lichen acclimation to changing environments: Photobiont switching vs. climate-specific uniqueness in Psora decipiens. Ecol. Evol. 2017, 7, 2560–2574. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Lyman, S.N.; Hartman, J.S.; Gustin, M.S. A review of passive sampling systems for ambient mercury measurements. Environ. Sci. Process. Impacts 2014, 16, 374–392. [Google Scholar] [CrossRef]
- Harper, M.; Purnell, C. Diffuse sampling-a review. Am. Ind. Hyg. Assoc. J. 1987, 48, 214–218. [Google Scholar] [CrossRef]
- Darkey, D.; Visagie, J. The more things change the more they remain the same: A study on the quality of life in an informal township in Tshwane. Habitat Int. 2013, 39, 302–309. [Google Scholar] [CrossRef]
- Sebeiwa, M.M. Characterisation of Dust Fallout around the City of Tshwane (COT), Gauteng, South Africa. Master’s Thesis, University of South Africa, Pretoria, South Africa, 2016. Available online: https://core.ac.uk/download/pdf/43178385.pdf (accessed on 5 February 2024).
- Sholupov, S.; Pogarev, S.; Ryzhov, V.; Mashyanov, N.; Stroganov, A. Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples. Fuel Process. Technol. 2004, 85, 473–485. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhuang, Z.H.X.; Wang, Y.R.; Huang, Z.H.Y.; Wang, X.R.; Lee, F.S.C. An analytical study of bioaccumulation and the binding forms of mercury in rat body using thermolysis coupled with atomic absorption spectrometry. Anal. Chim. Acta 2005, 538, 313–321. [Google Scholar] [CrossRef]
- Lodenius, M.; Tulisalo, E.; Soltanpour-Gargari, A. Exchange of mercury between atmosphere and vegetation under contaminated conditions. Sci. Total Environ. 2003, 304, 169–174. [Google Scholar] [CrossRef]
- Shivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantification of analytical methods. Chron. Young Sci. 2011, 2, 21. [Google Scholar] [CrossRef]
- Post, W.; Worschischek, E. Method of Electrochemically Etching Aluminium. U.S. Patent 3,249,523, 1966. [Google Scholar]
- Louvis, E.; Fox, P.; Stcliffe, C.J. Selective laser melting of aluminium components. J. Mater. Process. Technol. 2011, 211, 275–284. [Google Scholar] [CrossRef]
- Rahimi, M.; Fojan, P.; Gurevich, L.; Afshari, A. Effects of aluminium surface morphology and chemical modification on wettability. Appl. Surf. Sci. 2014, 296, 124–132. [Google Scholar] [CrossRef]
- Coade, R.; Coldham, D. The interaction of mercury and aluminium in heat exchangers in a natural gas plants. Int. J. Press Vessel. Pip. 2006, 83, 336–342. [Google Scholar] [CrossRef]
- Bessone, J.B. The activation of aluminium by mercury ions in non-aggressive media. Corr. Sci. 2006, 48, 4243–4256. [Google Scholar] [CrossRef]
- Wegman, R.F.; Van Twisk, J. Surface Preparation Techniques for Adhesive Bonding, 2nd ed.; William Andrew: New York, NY, USA, 2013. [Google Scholar]
- Kendig, M.W.; Buchheit, R.G. Corrosion Inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings. Corrosion 2003, 59, 379–400. [Google Scholar] [CrossRef]
- Rimondi, V.; Benesperi, R.; Beutel, M.W.; Chiarantini, L.; Costagliola, P.; Lattanzi, P.; Medas, D.; Morelli, G. Monitoring of airborne mercury: Comparison of different techniques in the Monte Amiata District, Southern Tuscany, Italy. Int. J. Environ. Res. Public Health 2020, 17, 2353. [Google Scholar] [CrossRef] [PubMed]
- Klos, A.; Rajfur, M.; Sramek, I.; Waclawek, M. Mercury concentration in lichen, moss and soil samples collected from the forest areas of Poland and Glacensis Euroregions (Poland and Czech Republic). Environ. Monit. Assess. 2012, 184, 6765–6774. [Google Scholar] [CrossRef] [PubMed]
- Krishna, M.V.B.; Krarunasagar, D.; Arunachalam, J. Study of mercury pollution near a thermometer factory using lichens and mosses. Environ. Pollut. 2003, 24, 357–360. [Google Scholar] [CrossRef] [PubMed]
- True, A.; Panichev, N.; Okonkwo, J.; Forbes, P.B.C. Determination of the mercury contentment of lichens and comparison to atmospheric mercury levels in South African Highveld region. Clean Air J. 2012, 21, 19–21. [Google Scholar] [CrossRef]
- Panichev, N.; Mokgalaka, N.; Panicheva, S. Assessment of air pollution by mercury in South African provinces using lichens Parmelia caperata as bioindicators. Environ. Geochem. Health 2019, 41, 2239–2250. [Google Scholar] [CrossRef] [PubMed]
- Mclagan, D.S.; Mazur, M.E.E.; Mitchel, C.P.P.; Wania, F. Passive air sampling of gaseous elemental mercury: A critical review. Atmos. Chem. Phys. 2016, 16, 3061–3076. [Google Scholar] [CrossRef]
- Zhang, W.; Tong, Y.; Hu, D.; Ou, L.; Wang, X. Characterization of atmospheric mercury concentrations along an urban-rural gradient using a newly developed passive sampler. Atmos. Environ. 2012, 47, 26–32. [Google Scholar] [CrossRef]
- Brown, R.J.C.; Burdon, M.K.; Brown, A.S.; Kim, K.H. Assessment of pumped mercury vapour adsorption tubes as passive samplers using a micro-exposure chamber. J. Environ. Monit. 2012, 14, 2456–2463. [Google Scholar] [CrossRef]
Reference Material | Measured Value (ng g−1) | Certified Value (ng g−1) |
---|---|---|
SARM 20 | 247 ± 11 | 250 ± 30 |
SRM 1515 | 44 ± 0.9 | 44 ± 4 |
Mass of Al Powder (mg) | Hg Concentration (ng g−1) |
---|---|
128 | 58 ± 4 |
130 | 63 ± 8 |
129 | 55 ± 3 |
124 | 60 ± 5 |
130 | 62 ± 5 |
128 | 56 ± 3 |
132 | 55 ± 4 |
129 | 66 ± 4 |
143 | 58 ± 3 |
140 | 61 ± 4 |
Mean ± SD | 59.4 ± 3.66 |
Exposure Time, Days | a [Hg], ng g−1 | b [Hg], ng g−1 | c [Hg], ng g−1 |
---|---|---|---|
0 | 0.6 ± 0.01 | 0.6 ± 0.01 | 0.6 ± 0.01 |
7 | 13 ± 0.04 | 17 ± 0.06 | 27 ± 0.10 |
14 | 24 ± 0.09 | 36 ± 0.10 | 58 ± 0.64 |
21 | 36 ± 0.38 | 66 ± 1.2 | 107 ± 2.3 |
Location | Deployment Period, Months | Hg0 Concentration, ng g−1 | ||
---|---|---|---|---|
Pretoria CBD | 6 | 105 a | 109 b | 107 ± 1.4 c |
10 | 110 a | 115 b | 113 ± 1.8 c | |
Centurion | 6 | 108 a | 111 b | 110 ± 1.2 c |
10 | 136 a | 140 b | 138 ± 1.4 c | |
Gezina | 6 | 110 a | 113 b | 112 ± 1.4 c |
10 | 139 a | 145 b | 141 ± 2.1 c | |
Hammanskraal | 6 | 119 a | 123 b | 121 ± 1.4 c |
10 | 148 a | 160 b | 155 ± 3.9 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modise, I.M.; Panichev, N.; Mandiwana, K.L. The Application of Aluminium Powder as an Accumulation Medium of Mercury from Air. Atmosphere 2024, 15, 368. https://doi.org/10.3390/atmos15030368
Modise IM, Panichev N, Mandiwana KL. The Application of Aluminium Powder as an Accumulation Medium of Mercury from Air. Atmosphere. 2024; 15(3):368. https://doi.org/10.3390/atmos15030368
Chicago/Turabian StyleModise, Innocentia M., Nikolai Panichev, and Khakhathi L. Mandiwana. 2024. "The Application of Aluminium Powder as an Accumulation Medium of Mercury from Air" Atmosphere 15, no. 3: 368. https://doi.org/10.3390/atmos15030368
APA StyleModise, I. M., Panichev, N., & Mandiwana, K. L. (2024). The Application of Aluminium Powder as an Accumulation Medium of Mercury from Air. Atmosphere, 15(3), 368. https://doi.org/10.3390/atmos15030368