Comparison of RegCM4.7.1 Simulation with the Station Observation Data of Georgia, 1985–2008
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Regional Climate Model
2.2. Weather Station Data
3. Results and Discussion
3.1. Statistical Structure of Actual and Model Data
3.2. Correlation Relations between Actual and Model Values
3.3. Quantitative Assessment of Simulation Results
4. Conclusions
- The research provides insights into how RegCM4.7.1, using the chosen parameterizations, represents the mean and extreme temperatures and precipitation for the historical period in Georgia.
- The best results when modeling average annual temperatures are obtained for the stations of Gori, Kutaisi, Pasanauri, Tianeti, and Tsalka when the difference between the observation and model data is 0.5 °C or less. Large discrepancies are noted for maximum and minimum temperatures. Overall, the correspondence between the statistical structures of observation and model temperature data can be considered satisfactory.
- 3.
- The correlation between the observational and model data for annual average values, as well as absolute maximum and minimum temperatures, is exceptionally high. For mean annual temperatures, this correlation can be deemed near-perfect, ranging between 0.99 and 1.00.
- 4.
- The bias between the model and observation data is greater for extreme temperatures than for mean temperatures. The bias between the model and observation data is greater for minimum temperatures than for maximum temperatures.
- 5.
- A study of the spatial distribution of bias between actual and model average annual temperatures showed that the greatest fitness between actual and model data was observed at the stations of eastern Georgia (six stations) and Kutaisi. In seven stations, the bias between the observation and model temperatures is positive and falls into the 1.1–3 °C gradation, while on the Black Sea coast stations (Poti, Kobulati, and Zugdidi), the bias is negative, −3–−1.1 °C. The highest bias is in Ambrolauri, and it is in the range of 31.1÷5 °C, while in Dedoplistskaro and Mt. Sabueti, the bias is negative and falls in the range of −5–−3.1 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elizbarashvili, M.; Elizbarashvili, E.; Tatishvili, M.; Elizbarashvili, S.; Meskhia, R.; Kutaladze, N.; King, L.; Keggenhoff, I.; Khardziani, T. Georgian climate change under global warming conditions. Ann. Agrar. Sci. 2017, 15, 17–25. [Google Scholar] [CrossRef]
- Elizbarashvili, E. Climate of Georgia; Georgian Technical University, Institute of Hydrometeorology: Tbilisi, Georgia, 2017; 360p, Available online: https://www.ecohydmet.ge/geo%20climate.pdf (accessed on 6 March 2024)(In Georgian Language).
- Elizbarashvili, E. Climatic Resources of Georgia; Institute of Hydrometeorology: Tbilisi, Georgia, 2007; 321p, Available online: https://www.ecohydmet.ge/saqarTvelos%20klimaturi%20resursebi.pdf (accessed on 6 March 2024)(In Georgian Language).
- Keggenhoff, I.; Elizbarashvili, M.; Amiri-Farahani, A.; King, L. Trends in daily temperature and precipitation extremes over Georgia, 1971–2010. Weather Clim. Extrem. 2014, 4, 75–85. [Google Scholar] [CrossRef]
- Keggenhoff, I.; Elizbarashvili, M.; King, L. Recent changes in Georgia’s temperature means and extremes: Annual and seasonal trends between 1961 and 2010. Weather Clim. Extremes 2015, 8, 34–45. [Google Scholar] [CrossRef]
- Keggenhoff, I.; Elizbarashvili, M.; King, L. Heat Wave Events over Georgia Since 1961: Climatology, Changes and Severity. Climate 2015, 3, 308–328. [Google Scholar] [CrossRef]
- Ministry of Environment Protection and Natural Resources of Georgia and UNDP Country Office. Georgia’s Second National Communication to the UNFCCC; Ministry of Environment Protection and Natural Resources of Georgia and UNDP Country Office: Tbilisi, Georgia, 2009. [Google Scholar]
- Ministry of Environment and Natural Resources Protection of Georgia. Georgia’s Third National Communication to the UNFCCC; Ministry of Environment and Natural Resources Protection of Georgia: Tbilisi, Georgia, 2015; Available online: https://unfccc.int/sites/default/files/resource/Geonc3.pdf (accessed on 6 March 2024).
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- IPCC. The Physical Science Basis. In Contribution of Working Group I of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kalmár, T.; Pieczka, I.; Pongrácz, R. A sensitivity analysis of the different setups of the RegCM4.5 model for the Carpathian region. Int. J. Climatol. 2021, 41, E1180–E1201. [Google Scholar] [CrossRef]
- Valcheva, R.; Popov, I.; Gerganov, N. Convection-Permitting Regional Climate Simulation over Bulgaria: Assessment of Precipitation Statistics. Atmosphere 2023, 14, 1249. [Google Scholar] [CrossRef]
- Marinucci, M.R.; Giorgi, F.; Beniston, M.; Wild, M.; Tschuck, P.; Ohmura, A.; Bernasconi, A. High-resolution simulations of January and July climate over the western Alpine region with a nested Regional Modeling system. Theor. Appl. Clim. 1995, 51, 119–138. [Google Scholar] [CrossRef]
- Giorgi, F.; Bates, G.T. The climatological skill of a regional model over complex terrain. Mon. Weather Rev. 1989, 117, 2325–2347. [Google Scholar] [CrossRef]
- Dickinson, R.E.; Errico, R.M.; Giorgi, F.; Bates, G.T. A regional climate model for the western United States. Clim. Chang. 1989, 15, 383–422. [Google Scholar] [CrossRef]
- Giorgi, F.; Marinucci, M.R.; Bates, G.T. Development of a second-generation regional climate model (RegCM2). Part I. Boundary layer and radiative transfer processes. Mon. Weather Rev. 1993, 121, 2794–2813. [Google Scholar] [CrossRef]
- Pal, J.S.; Small, E.; Eltahir, E.A.B. Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. 2000, 105, 29579–29594. [Google Scholar] [CrossRef]
- Pal, J.S.; Giorgi, F.; Bi, X.; Elguindi, N.; Solmon, F.; Gao, X.; Rauscher, S.A.; Francisco, R.; Zakey, A.; Winter, J.; et al. Regional Climate Modeling for the Developing World: The ICTP RegCM3 and RegCNET. Bull. Am. Meteorol. Soc. 2007, 88, 1395–1410. [Google Scholar] [CrossRef]
- Halenka, T.; Kalvová, J.; Chládová, Z.; Demeterová, A.; Zemánková, K.; Belda, M. On the capability of RegCM to capture extremes in long term regional climate simulation–comparison with the observations for Czech Republic. Theor. Appl. Clim. 2006, 86, 125–145. [Google Scholar] [CrossRef]
- Giorgi, F.; Jones, C.; Asrar, G.R. Addressing Climate Information Needs at the Regional Level: The CORDEX Framework. WMO Bull. 2009, 58, 175–183. [Google Scholar]
- Gao, X.; Shi, Y.; Giorgi, F. A high-resolution simulation of climate change over China. Sci. China Earth Sci. 2010, 54, 462–472. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef]
- Gutowski, W.J., Jr.; Giorgi, F.; Timbal, B.; Frigon, A.; Jacob, D.; Kang, H.-S.; Raghavan, K.; Lee, B.; Lennard, C.; Nikulin, G.; et al. WCRP COordinated Regional Downscaling EXperiment (CORDEX): A diagnostic MIP for CMIP6. Geosci. Model Dev. 2016, 9, 4087–4095. [Google Scholar] [CrossRef]
- Gao, X.; Giorgi, F. Use of the RegCM System over East Asia: Review and Perspectives. Engineering 2017, 3, 766–772. [Google Scholar] [CrossRef]
- Boulahfa, I.; ElKharrim, M.; Naoum, M.; Beroho, M.; Batmi, A.; El Halimi, R.; Maâtouk, M.; Aboumaria, K. Assessment of performance of the regional climate model (RegCM4.6) to simulate winter rainfall in the north of Morocco: The case of Tangier-Tétouan-Al-Hociema Region. Heliyon 2023, 9, e17473. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, G.; Gao, X. Role of resolution in regional climate change projections over China. Clim. Dyn. 2017, 51, 2375–2396. [Google Scholar] [CrossRef]
- Gu, H.; Wang, X. Performance of the RegCM4.6 for High-Resolution Climate and Extreme Simulations over Tibetan Plateau. Atmosphere 2020, 11, 1104. [Google Scholar] [CrossRef]
- Holtslag, A.A.M.; Boville, B.A. Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model. J. Clim. 1993, 6, 1825–1842. [Google Scholar] [CrossRef]
- Holtslag, A.A.M.; De Bruijn, E.I.F.; Pan, H.-L. A High Resolution Air Mass Transformation Model for Short-Range Weather Forecasting. Mon. Weather. Rev. 1990, 118, 1561–1575. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, M.; Dickinson, R.E. Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data. J. Clim. 1998, 11, 2628–2644. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass-flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
- Federico, S. Implementation of the WSM5 and WSM6 Single Moment Microphysics Scheme into the RAMS Model: Verification for the HyMeX-SOP1. Adv. Meteorol. 2016, 2016, 5094126. [Google Scholar] [CrossRef]
- Mielikainen, J.; Huang, B.; Huang, H.L.A.; Goldberg, M.D. Improved GPU/CUDA based parallel weather and research forecast (WRF) Single Moment 5-class (WSM5) cloud microphysics. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1256–1265. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Ukkonen, P.; Hogan, R.J. Implementation of a machine-learned gas optics parameterization in the ECMWF Integrated Forecasting System: RRTMGP-NN 2.0. Geosci. Model Dev. 2023, 16, 3241–3261. [Google Scholar] [CrossRef]
- Oleson, K.W.; Niu, G.; Yang, Z.; Lawrence, D.M.; Thornton, P.E.; Lawrence, P.J.; Stöckli, R.; Dickinson, R.E.; Bonan, G.B.; Levis, S.; et al. Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res. Biogeosciences 2008, 113, G01021. [Google Scholar] [CrossRef]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef] [PubMed]
- Coppola, E.; Stocchi, P.; Pichelli, E.; Alavez, J.A.T.; Glazer, R.; Giuliani, G.; Di Sante, F.; Nogherotto, R.; Giorgi, F. Non-Hydrostatic RegCM4 (RegCM4-NH): Model description and case studies over multiple domains. Geosci. Model Dev. 2021, 14, 7705–7723. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An Improved in Situ and Satellite SST Analysis for Climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Elizbarashvili, M.; Mikuchadze, G.; Chikhradze, N. Regional Climate Model Simulation of Georgia Precipitation and Surface Air Temperature during 2009–2014. In Proceedings of the International Scientific Conference “Geophysical Processes in the Earth and its Envelopes”, Tbilisi, Georgia, 16–17 November 2023; pp. 166–169. Available online: http://openlibrary.ge/bitstream/123456789/10426/1/40_IG_90.pdf (accessed on 6 March 2024).
- Elizbarashvili, M.; Seperteladze, Z.; Mikuchadze, G. The Performance of RegCM4. 7.1 over Georgia’s Territory Using Two Different Configurations. Georgian Geogr. J. 2023, 3, 1–10. [Google Scholar]
- Elizbarashvili, M.; Mikuchadze, G.; Kalmár, T.; Pal, J. Comparison of Regional Climate Model Simulations to Observational Data for Georgia. In Proceedings of the EGU General Assembly Conference, EGU23-3828, Vienna, Austria, 23–28 April 2023. [Google Scholar] [CrossRef]
- Elizbarashvili, M.; Kalmár, T.; Tsintsadze, M.; Mshvenieradze, T. Regional climate modeling for Georgia with RegCM4.7. In Proceedings of the EGU General Assembly Conference, EGU22-2065, Vienna, Austria, 23–27 May 2022; Available online: https://meetingorganizer.copernicus.org/EGU22/EGU22-2065.html (accessed on 6 March 2024).
- Elizbarashvili, M.; Tsintsadze, M.; Mshvenieradze, T. High-resolution Climate Simulation Using Double-nesting Method for Georgia. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA, 13–17 December 2021; id. A55Q-1638. Available online: https://ui.adsabs.harvard.edu/abs/2021AGUFM.A55Q1638E/abstract (accessed on 6 March 2024).
- Bolashvili, N.; Dittmann, A.; King, L.; Neidze, V. (Eds.) National Atlas of Georgia; Franz Steiner Verla: Stuttgart, Germany, 2018; 137p, ISBN 978-3-515-12183-5. [Google Scholar]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences; Houghton Mifflin Company: Boston, MA, USA, 2003; 756p, ISBN 978-0618124053. [Google Scholar]
- Yin Robert, K. Case Study Research Design and Methods, 5th ed.; Sage: Thousand Oaks, CA, USA, 2014; 282p. [Google Scholar]
N | Climate Regions [46] and Weather Stations | Location | ||
---|---|---|---|---|
Lat, N° | Lon, E° | Alt, a.s.l., Meter | ||
Maritime humid subtropical climate region. Excessively humid subzone with prevailing sea breeze during the year and maximum precipitation in autumn–winter. | ||||
1. | Kobuleti | 41.82 | 41.78 | 3 |
2. | Poti | 42.13 | 41.70 | 4 |
Maritime humid subtropical climate region. Humid subzone with well-expressed monsoon-like winds and maximum precipitation in spring–autumn. | ||||
3. | Kutaisi | 42.27 | 42.69 | 150 |
4. | Zugdidi | 42.52 | 41.88 | 117 |
Maritime humid subtropical climate region. Sufficiently humid climate with moderate cold winter and comparatively dry hot summer. | ||||
5. | Zestaponi | 42.11 | 43.05 | 201 |
Maritime humid subtropical climate region. Humid climate with cold winter and prolonged cold summer. | ||||
6. | Ambrolauri | 42.52 | 43.15 | 544 |
7. | Mt. Sabueti | 42.03 | 43.48 | 1242 |
8. | Sachkhere | 42.35 | 43.42 | 415 |
Moderately humid subtropical climate region. Moderate warm steppe climate with hot summer and precipitation with two minimums per year. | ||||
9. | Bolnisi | 41.45 | 44.55 | 534 |
Moderately humid subtropical climate region. Moderate humid climate with moderately cold winter and prolonged warm summer, precipitation with two minimums per year. | ||||
10. | Borjomi | 41.83 | 43.40 | 789 |
11. | Dedoplistskaro | 41.47 | 46.08 | 800 |
12. | Pasanauri | 42.35 | 44.70 | 1070 |
13. | Tianeti | 42.12 | 44.97 | 1099 |
Moderately humid subtropical climate region. Transitional climate from moderate warm steppe to moderate humid climate with hot summer and precipitation with two minimums per year. | ||||
14. | Gori | 41.98 | 44.12 | 588 |
15. | Sagarejo | 41.73 | 45.33 | 802 |
16. | Tbilisi | 41.72 | 44.80 | 403 |
Moderately humid subtropical climate region. Moderate humid climate with moderately cold winter and hot summer, precipitation with two minimums per year. | ||||
17. | Telavi | 41.93 | 45.48 | 568 |
Transitional climate subzone from moderately humid subtropical climate to Middle East highland dry subtropic climate. Highland steppe climate with less snowy cold winter and prolonged cold summer. | ||||
18. | Akhalkalaki | 41.42 | 43.48 | 1716 |
19. | Akhaltsikhe | 41.63 | 43.00 | 982 |
Transitional climate subzone from moderately humid subtropical climate to Middle East highland dry subtropic climate. Transitional climate from moderately humid climate to highland steppe climate with cold winter and prolonged summer. | ||||
20. | Tsalka | 41.60 | 44.08 | 1457 |
Region | Weather Station, Altitude a.s.l., m | Air Temperature | Monthly | Annual | |||
---|---|---|---|---|---|---|---|
January | April | July | October | ||||
Black Sea Coast and Kolkheti Lowland | Poti, 3 | Tmean | 0.93 | 0.89 | 0.77 | 0.85 | 0.99 |
Tmax | 0.75 | 0.74 | 0.84 | 0.57 | 0.92 | ||
Tmin | 0.65 | 0.62 | 0.78 | 0.64 | 0.97 | ||
Kutaisi, 114 | Tmean | 0.97 | 0.94 | 0.72 | 0.92 | 0.99 | |
Tmax | 0.87 | 0.81 | 0.45 | 0.77 | 0.97 | ||
Tmin | 0.68 | 0.66 | 0.77 | 0.63 | 0.97 | ||
Eastern Georgia | Tbilisi, 403 | Tmean | 0.91 | 0.96 | 0.82 | 0.90 | 1.00 |
Tmax | 0.75 | 0.84 | 0.78 | 0.72 | 0.97 | ||
Tmin | 0.77 | 0.87 | 0.57 | 0.71 | 0.98 | ||
Dedoplistskaro, 800 | Tmean | 0.85 | 0.94 | 0.86 | 0.92 | 0.99 | |
Tmax | 0.55 | 0.88 | 0.69 | 0.76 | 0.96 | ||
Tmin | 0.65 | 0.78 | 0.46 | 0.67 | 0.98 | ||
South Georgian Highland | Akhalkalaki, 1716 | Tmean | 0.76 | 0.91 | 0.66 | 0.91 | 0.99 |
Tmax | 0.71 | 0.87 | 0.31 | 0.56 | 0.97 | ||
Tmin | 0.61 | 0.59 | 0.61 | 0.66 | 0.94 | ||
Tsalka, 1457 | Tmean | 0.85 | 0.97 | 0.91 | 0.95 | 0.99 | |
Tmax | 0.76 | 0.83 | 0.48 | 0.68 | 0.96 | ||
Tmin | 0.55 | 0.61 | 0.49 | 0.47 | 0.95 | ||
Greater Caucasus | Pasanauri, 1716 | Tmean | 0.90 | 0.95 | 0.86 | 0.92 | 0.99 |
Tmax | 0.53 | 0.75 | 0.67 | 0.60 | 0.96 | ||
Tmin | 0.57 | 0.74 | 0.58 | 0.77 | 0.96 | ||
Tianeti, 1099 | Tmean | 0.82 | 0.95 | 0.77 | 0.91 | 0.99 | |
Tmax | 0.79 | 0.81 | 0.81 | 0.67 | 0.97 | ||
Tmin | 0.44 | 0.88 | 0.50 | 0.63 | 0.95 |
Weather Station | a | b | Weather Station | a | b |
---|---|---|---|---|---|
Akhalki | 0.87759447 | 1.4573585 | Pasanauri | 0.924811 | −2.79561 |
Akhaltsikhe | 0.828977 | 0.346824 | Poti | 1.010916 | 2.954666 |
Ambrolauri | 0.894532 | −2.15233 | Sachkhere | 0.88587 | −1.00931 |
Bolnisi | 0.849572 | 0.560656 | Sagarejo | 0.954986 | 1.364985 |
Borjomi | 0.862913 | −0.04571 | Tbilisi | 0.915066 | 0.231606 |
Dedoplistskaro | 0.915246729 | 4.255145335 | Telavi | 0.92004 | −0.68731 |
Gori | 0.8847759 | 0.946932 | Tianeti | 0.875765 | 1.280343 |
Kobuleti | 0.941222 | 3.583432 | Tsalka | 0.928408 | 0.971602 |
Kutaisi | 0.992431 | 0.540475 | Zestaponi | 0.909109 | 0.237966 |
Mt. Sabueti | 0.924619 | 4.680622 | Zugdidi | 1.031581 | 1.065427 |
Region | Weather Station, Altitude a.s.l., m | Precipitation | Cold Spell | Warm Spell | Annual |
---|---|---|---|---|---|
Black Sea Coast and Kolkheti Lowland | Poti, 3 | Sum | 0.56 | 0.47 | 0.59 |
Max. | 0.44 | 0.14 | 0.39 | ||
Eastern Georgia | Tbilisi, 403 | Sum | 0.73 | 0.52 | 0.68 |
Max. | 0.50 | 0.20 | 0.35 | ||
South Georgian Highland | Akhalkalaki, 1716 | Sum | 0.56 | 0.57 | 0.51 |
Max. | 0.5 | 0.15 | 0.23 | ||
Greater Caucasus | Pasanauri, 1716 | Sum | 0.63 | 0.55 | 0.68 |
Max. | 0.42 | 0.28 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elizbarashvili, M.; Amiranashvili, A.; Elizbarashvili, E.; Mikuchadze, G.; Khuntselia, T.; Chikhradze, N. Comparison of RegCM4.7.1 Simulation with the Station Observation Data of Georgia, 1985–2008. Atmosphere 2024, 15, 369. https://doi.org/10.3390/atmos15030369
Elizbarashvili M, Amiranashvili A, Elizbarashvili E, Mikuchadze G, Khuntselia T, Chikhradze N. Comparison of RegCM4.7.1 Simulation with the Station Observation Data of Georgia, 1985–2008. Atmosphere. 2024; 15(3):369. https://doi.org/10.3390/atmos15030369
Chicago/Turabian StyleElizbarashvili, Mariam, Avtandil Amiranashvili, Elizbar Elizbarashvili, George Mikuchadze, Tamar Khuntselia, and Nino Chikhradze. 2024. "Comparison of RegCM4.7.1 Simulation with the Station Observation Data of Georgia, 1985–2008" Atmosphere 15, no. 3: 369. https://doi.org/10.3390/atmos15030369
APA StyleElizbarashvili, M., Amiranashvili, A., Elizbarashvili, E., Mikuchadze, G., Khuntselia, T., & Chikhradze, N. (2024). Comparison of RegCM4.7.1 Simulation with the Station Observation Data of Georgia, 1985–2008. Atmosphere, 15(3), 369. https://doi.org/10.3390/atmos15030369