Risk Estimation of Heavy Metals Associated with PM2.5 in the Urban Area of Cuernavaca, México
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Chemical Analysis
2.3. Enrichment Factor (EF)
2.4. Geo-Accumulation Index (Igeo)
2.5. Ecological Risk Index (RI)
2.6. Health Risk Assessment
2.6.1. Non-Cancer Risk
2.6.2. Cancer Risk
2.7. Monte Carlo Simulation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Metal Concentration
3.2. Comparison with Other Studies
3.3. Enrichment Factor (EF) and Geo-Accumulation Index
3.4. Environmental Risk
3.5. Human Health Risk
Non Cancer Risk
3.6. Carcinogenic Risk through the Inhalation Exposure Pathway
Incremental Lung Cancer Risk (ILCR)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olstrup, H.; Johansson, C.; Forsberg, B.; Åström, C.; Orru, H. Seasonal Variations in the Daily Mortality Associated with Exposure to Particles, Nitrogen Dioxide, and Ozone in Stockholm, Sweden, from 2000 to 2016. Atmosphere 2021, 12, 1481. [Google Scholar] [CrossRef]
- Emmanouil, C.; Drositi, E.; Vasilatou, V.; Diapouli, E.; Krikonis, K.; Eleftheriadis, K.; Kungolos, A. Study on particulate matter air pollution, source origin, and human health risk based of PM10 metal content in Volos City, Greece. Toxicol. Environ. Chem. 2016, 99, 691–709. [Google Scholar] [CrossRef]
- Scorer, R.S. Air Pollution Meteorology; Horwood Pub.: Chichester, UK, 2002. [Google Scholar]
- World Health Organization. WHO, Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. March 2018. Available online: https://www.who.int/publications/i/item/9789241511353 (accessed on 25 August 2023).
- World Health Organization. WHO, 7 Million Premature Deaths Annually Linked to Air Pollution [Press Release]. 25 March 2014. Available online: https://www.who.int/news/item/25-03-2014-7-million-premature-deaths-annually-linked-to-air-pollution (accessed on 15 September 2023).
- Gao, P.; Guo, H.; Wang, S.; Guo, L.; Xing, Y.; Yao, C.; Jia, L.; Fan, Q.; Hang, J. In Vitro investigations of high molecular weight polycyclic aromatic hydrocarbons in winter airborne particles using simulated lung fluids. Atmos. Environ. 2019, 201, 293–300. [Google Scholar] [CrossRef]
- World Health Organization. WHO, Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; Executive Summary. World Health Organization. 2021. Available online: https://apps.who.int/iris/handle/10665/345334 (accessed on 16 September 2023).
- Alsbou, E.M.E.; Al-Khashman, O.A. Heavy metal concentrations in roadside soil and street dust from Petra region, Jordan. Environ. Monit. Assess. 2017, 190, 48. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry (ATSDR). Substance priority List. U.S. Department of Health and Human Services. 2019. Available online: https://www.atsdr.cdc.gov/spl/index.html (accessed on 15 September 2023).
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Chen, Y.; He, S.; Chen, W.; Wu, L.; Xu, D.; Chen, Z.; Wang, X.; Lou, X. A follow-up study on the characterization and health risk assessment of heavy metals in ambient air particles emitted from a municipal waste incinerator in Zhejiang, China. Chemosphere 2020, 246, 125777. [Google Scholar] [CrossRef]
- Zhang, X.; Eto, Y.; Aikawa, M. Risk assessment and management of PM2.5-bound heavy metals in the urban area of Kitakyushu, Japan. Sci. Total Environ. 2021, 795, 148748. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, W.; Li, L.; Li, J.; Wei, L.; Chi, W.; Hong, L.; Zhao, Q.; Jiang, J. Seasonal concentration distribution of PM1.0 and PM2.5 and a risk assessment of bound trace metals in Harbin, China: Effect of the species distribution of heavy metals and heat supply. Sci. Rep. 2020, 10, 8160. [Google Scholar] [CrossRef]
- Imani, M. Particulate matter (PM2.5 and PM10) generation map using MODIS Level-1 satellite images and deep neural network. J. Environ. Manag. 2021, 281, 111888. [Google Scholar] [CrossRef]
- Saldarriaga-Noreña, H.; Hernández-Mena, L.; Ramírez-Muñiz, M.; Carbajal-Romero, P.; Cosío-Ramírez, R.; Esquivel-Hernández, B. Characterization of trace metals of risk to human health in airborne particulate matter (PM2.5) at two sites in Guadalajara, Mexico. J. Environ. Monit. 2009, 11, 887–894. [Google Scholar] [CrossRef]
- Saldarriaga-Noreña, H.; Montiel-Palma, S.; Márquez, R.L.; Sánchez, J.V.; Murillo-Tovar, M.A. Chemical characterization and Health Risk Assessment of metals associated to airborne particulate matter PM2.5 in Saltillo, México. South Fla. J. Dev. 2021, 2, 4218–4238. [Google Scholar] [CrossRef]
- Hernández-López, A.E.; del Campo, J.M.M.; Mugica-Álvarez, V.; Hernández-Valle, B.L.; Mejía-Ponce, L.V.; Pineda-Santamaría, J.C.; Reynoso-Cruces, S.; Mendoza-Flores, J.A.; Rozanes-Valenzuela, D. A Study of PM2.5 Elemental Composition in Southwest Mexico City and Development of Receptor Models with Positive Matrix Factorization. Rev. Int. Contam. Ambient. 2021, 37, 67–88. [Google Scholar] [CrossRef]
- Murillo-Tovar, M.A.; Saldarriaga-Noreña, H.; Hernández-Mena, L.; Campos-Ramos, A.; Cárdenas-González, B.; Ospina-Noreña, J.E.; Cosío-Ramírez, R.; Díaz-Torres, J.D.J.; Smith, W. Potential Sources of Trace Metals and Ionic Species in PM2.5 in Guadalajara, Mexico: A Case Study during Dry Season. Atmosphere 2015, 6, 1858–1870. [Google Scholar] [CrossRef]
- Blanco-Jiménez, S.; Altúzar, F.; Jiménez, B.; Aguilar, G.; Pablo, M.; Benítez, M.A. Evaluación de Partículas Suspendidas PM2.5 en el Área Metropolitana de Monterrey; Instituto Nacional de Ecología y Cambio Climático (INECC): México City, Mexico, 2015; 34p, Available online: http://aire.nl.gob.mx/docs/reportes/Reporte_WG3_PM2.5_Monterrey.pdf (accessed on 1 January 2020).
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. J. Geol. 1969, 2, 108–118. [Google Scholar]
- Håkanson, L. An ecological risk index for aquatic pollution control: A sedimentary approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Alves, C.A.; Vicente, E.D.; Vicente, A.M.; Rienda, I.C.; Tomé, M.; Querol, X.; Amato, F. Loadings, chemical patterns and risks of inhalable road dust particles in an Atlantic city in the north of Portugal. Sci. Total Environ. 2020, 737, 139596. [Google Scholar] [CrossRef] [PubMed]
- Zhi, M.; Zhang, X.; Zhang, K.; Ussher, S.J.; Lv, W.; Li, J.; Gao, J.; Luo, Y.; Meng, F. The characteristics of atmospheric particles and metal elements during winter in Beijing: Size distribution, source analysis, and environmental risk assessment. Ecotoxicol. Environ. Saf. 2021, 211, 111937. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Guo, M.; Feng, J.; Liang, S.; Han, D.; Cheng, J. Characterization and risk assessment of heavy metals in road dust from a developing city with good air quality and from Shanghai, China. Environ. Sci. Pollut. Res. 2019, 26, 11387–11398. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Exposure Factors Handbook; EPA/600/R-09/052F; National Center for Environmental Assessment: Washington, DC, USA, 2011. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252 (accessed on 10 August 2023).
- Environmental Protection Agency. Exposure Assessment Tools by Routes-Inhalation. 2023. Available online: https://www.epa.gov/expobox/exposure-assessment-tools-routes-inhalation (accessed on 20 October 2023).
- U.S. Environmental Protection Agency. Guiding Principles for Monte Carlo Analysis; EPA/630/R-97/001; U.S. Environmental Protection Agency: Washington, DC, USA, 1997. Available online: https://www.epa.gov/sites/default/files/2014-11/documents/montecar.pdf (accessed on 10 August 2023).
- Jiang, C.; Zhao, Q.; Zheng, L.; Chen, X.; Li, C.; Ren, M. Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities, China. Ecotoxicol. Environ. Saf. 2021, 224, 112679. [Google Scholar] [CrossRef]
- Díaz-González, L.; Uscanga-Junco, O.A.; Rosales-Rivera, M. Development and comparison of machine learning models for water multidimensional classification. J. Hydrol. 2021, 598, 126234. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Integrated Risk Information System. Available online: https://www.epa.gov/iris/basic-information-about-integrated-risk-information-system (accessed on 24 September 2023).
- International Agency for Research on Cancer. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001B; 2005. Available online: https://www3.epa.gov/airtoxics/cancer_guidelines_final_3-25-05.pdf (accessed on 17 August 2023).
- Rajšić, S.; Mijić, Z.; Tasić, M.; Radenković, M.; Joksić, J. Evaluation of the levels and sources of trace elements in urban particulate matter. Environ. Chem. Lett. 2008, 6, 95–100. [Google Scholar] [CrossRef]
- Pacyna, J.M. Source inventories for atmospheric trace metals. In Atmospheric Particles; IUPAC Series on Analytical and Physical Chemistry of Environmental Systems; Harrison, R.M., van Grieken, R.E., Eds.; Wiley: Chichester, UK, 1998; Volume 5, pp. 385–423. [Google Scholar]
- López, D.L.; Bundschuh, J.; Birkle, P.; Armienta, M.A.; Cumbal, L.; Sracek, O.; Cornejo, L.; Ormachea, M. Arsenic in volcanic geothermal fluids of Latin America. Sci. Total Environ. 2012, 429, 57–75. [Google Scholar] [CrossRef]
- Allen, A.; Nemitz, E.; Shi, J.; Harrison, R.; Greenwood, J. Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmos. Environ. 2001, 35, 4581–4591. [Google Scholar] [CrossRef]
- Fukai, T.; Kobayashi, T.; Sakaguchi, M.; Aoki, M.; Saito, T.; Fujimori, E.; Haraguchi, H. Chemical Characterization of Airborne Particulate Matter in Ambient Air of Nagoya, Japan, as Studied by the Multielement Determination with ICP-AES and ICP-MS. Anal. Sci. 2007, 23, 207–213. [Google Scholar] [CrossRef]
- Han, X.; Lu, X. Spatial distribution, environmental risk and source of heavy metals in street dust from an industrial city in semi-arid area of China. Arch. Environ. Prot. 2017, 43, 10–19. [Google Scholar] [CrossRef]
- Guo, F.; Tang, M.; Wang, X.; Yu, Z.; Wei, F.; Zhang, X.; Jin, M.; Wang, J.; Xu, D.; Chen, Z.; et al. Characteristics, sources, and health risks of trace metals in PM2.5. Atmospheric Environ. 2022, 289, 119314. [Google Scholar] [CrossRef]
- Makkonen, U.; Vestenius, M.; Huy, L.; Anh, N.; Linh, P.; Thuy, P.; Phuong, H.; Nguyen, H.; Thuy, L.; Aurela, M.; et al. Chemical composition and potential sources of PM2.5 in Hanoi. Atmos. Environ. 2023, 299, 119650. [Google Scholar] [CrossRef]
- Haritash, A.K.; Kaushik, C.P.; Kaushik, A.; Kansal, A.; Yadav, A.K. Suitability assessment of groundwater for drinking, irrigation and industrial use in some North Indian villages. Environ. Monit. Assess. 2008, 145, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Chester, R.; Nimmo, M.; Alarcon, M.; Saydam, C.; Murphy, K.; Sanders, G.; Corcoran, P. Defining the chemical character of aerosols from the atmosphere of the mediterranean-sea and surrounding regions. Oceanol. Acta 1993, 16, 231–246. [Google Scholar]
- Wright, R.O.; Amarasiriwardena, C.; Woolf, A.D.; Jim, R.; Bellinger, D.C. Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. NeuroToxicology 2006, 27, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Barbier, O.; Jacquillet, G.; Tauc, M.; Cougnon, M.; Poujeol, P. Effect of Heavy Metals on, and Handling by, the Kidney. Nephron Physiol. 2005, 99, 105–110. [Google Scholar] [CrossRef] [PubMed]
- de Burbure, C.; Buchet, J.-P.; Bernard, A.; Leroyer, A.; Nisse, C.; Haguenoer, J.-M.; Bergamaschi, E.; Mutti, A. Biomarkers of Renal Effects in Children and Adults with Low Environmental Exposure to Heavy Metals. J. Toxicol. Environ. Health Part A 2003, 66, 783–798. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, B.F.A.; Ignotti, E.; Artaxo, P.; do Nascimento Saldiva, P.H.; Junger, W.L.; Hacon, S. Risk assessment of PM2.5 to child residents in Brazilian Amazon region with biofuel production. Environ. Health 2012, 11, 64. [Google Scholar] [CrossRef]
- Salinas-Rodríguez, A.; Fernández-Niño, J.A.; Manrique-Espinoza, B.; Moreno-Banda, G.L.; Sosa-Ortiz, A.L.; Qian, Z.M.; Lin, H. Exposure to ambient PM2.5 concentrations and cognitive function among older Mexican adults. Environ. Int. 2018, 117, 1–9. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. United States. Division of Toxicology and Human Health Sciences. Addendum to the Toxicological Profile for Arsenic. 2015. Available online: https://stacks.cdc.gov/view/cdc/35726 (accessed on 10 November 2023).
Igeo Value | Class | Level of Contamination |
---|---|---|
≤0 | 0 | Unpolluted |
0 to 1 | 1 | Unpolluted to moderate polluted |
1 to 2 | 2 | Moderately polluted |
2 to 3 | 3 | Moderately to strongly polluted |
3 to 4 | 4 | Strongly polluted |
4 to 5 | 5 | Strongly to extremely polluted |
≥5 | 6 | Extremely polluted |
Site 1 | Site 2 | Site 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean | Min | Max | SD | Mean | Min | Max | SD | Mean | Min | Max | SD |
30 | 2551.3 | 339.8 | 6368.3 | 1391.3 | 829.6 | 114.3 | 2040.3 | 438.6 | 3293.7 | 588.7 | 7009.2 | 1323.5 |
30 | 151 | 6.9 | 483.7 | 135.4 | 46.2 | 3.8 | 133.6 | 33.8 | 134.4 | 5.35 | 438.13 | 124.6 |
30 | 3147 | 622.1 | 6052.1 | 1141.4 | 4315 | 218.8 | 13,661.4 | 3808 | 4908.6 | 764.6 | 11,178.7 | 2229.6 |
30 | 744.2 | 164.4 | 1433.4 | 268 | 507.2 | 98.9 | 964.9 | 181.3 | 932.4 | 188.9 | 1712.1 | 329.3 |
30 | 55.3 | 6.7 | 192.5 | 58.2 | 27.5 | 3.9 | 51.1 | 26.9 | 94.5 | 7.6 | 332.9 | 101.6 |
30 | 94 | 9.1 | 328.1 | 99.8 | 49.3 | 3.1 | 174.11 | 53.5 | 111.2 | 12.1 | 386.8 | 117.4 |
30 | 63.1 | 5.5 | 178.1 | 44.3 | 24.5 | 6.2 | 81.8 | 23.9 | 83.7 | 2.5 | 279.4 | 81.6 |
30 | 78.9 | 29.4 | 236.2 | 62.8 | 33.8 | 12.6 | 101.4 | 27 | 125.7 | 15.5 | 324.4 | 73.6 |
30 | 117.9 | 37.2 | 321.6 | 77 | 142.7 | 45.6 | 467.3 | 134.2 | 638.1 | 98.7 | 1439.6 | 283.9 |
Site | N | Date | Al | Fe | Mg | Mn | As | Ni | Pb | V | Zn | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Guadalajara, México | 70 | 2009 | nr | 624.86 | 180.8 | 28.7 | nr | 4.92 | 93 | 12.97 | 181 | Saldarriaga et al., 2009 [15] |
Saltillo, México | 13 | 2011 | nr | 1386.4 | 1208 | 19.7 | nr | 108.5 | 91.2 | nr | 298.9 | Saldarriaga et al., 2021 [36] |
Mexico City, México | 63 | 2015–2019 | 158.7 | 246.7 | 51 | 74.3 | nr | 19.7 | 130.3 | 22.7 | 58 | Hernández et al., 2021 [17] |
Hangzhou, China | 439 | 2015–2019 | 35.71 | nr | nr | 35.9 | 18.97 | 9.73 | 25.95 | nr | nr | Guo et al., 2022 [39] |
Hanoi, Vietnam | 73 | 2019–2020 | 179 | 271 | nr | 47 | 5.31 | 1.4 | 185 | 1.39 | 1835 | Makkonen et al., 2023 [40] |
This study | 30 | 2013 | 2224.8 | 4123.5 | 727.9 | 59.1 | 110.5 | 84.8 | 57 | 79.5 | 299.6 |
Enrichment Factor (EF) | |||
Site 1 | Site 2 | Site 3 | |
Al | 0.7 | 0.3 | 0.6 |
As | 1815 | 495.1 | 827.4 |
Fe | 2.2 | 6.6 | 2.2 |
Mg | 0.6 | 0.7 | 0.5 |
Mn | 1.3 | 0.4 | 1 |
Ni | 26.6 | 5.9 | 15.2 |
Pb | 46.3 | 10.3 | 31.2 |
V | 10.4 | 3.6 | 9.6 |
Zn | 37 | 27.9 | 123.8 |
Geo-accumulation index (Igeo) | |||
Site 1 | Site 2 | Site 3 | |
As | 10.3 | 8.9 | 10.5 |
Ni | 4.1 | 3.4 | 4.7 |
Pb | 6.1 | 5 | 6.9 |
V | 3.3 | 2.4 | 4.4 |
Zn | 4.7 | 5.2 | 7.5 |
Site 1 | Site 2 | Site 3 | Average | |
---|---|---|---|---|
As | 19,504 | 7132 | 21,962 | 16,199 |
Ni | 130 | 81 | 195 | 135 |
Pb | 524 | 243 | 879 | 549 |
Zn | 39 | 57 | 268 | 121 |
V | 31 | 16 | 62 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito-Hernández, A.; Saldarriaga-Noreña, H.; Rosales-Rivera, M.; García-Betancourt, M.-L.; Murillo-Tovar, M.A.; Romero-Aguilar, M.; Mugica-Alvarez, V.; Díaz-Torres, J.d.J.; Figueroa-Lara, J.d.J. Risk Estimation of Heavy Metals Associated with PM2.5 in the Urban Area of Cuernavaca, México. Atmosphere 2024, 15, 409. https://doi.org/10.3390/atmos15040409
Brito-Hernández A, Saldarriaga-Noreña H, Rosales-Rivera M, García-Betancourt M-L, Murillo-Tovar MA, Romero-Aguilar M, Mugica-Alvarez V, Díaz-Torres JdJ, Figueroa-Lara JdJ. Risk Estimation of Heavy Metals Associated with PM2.5 in the Urban Area of Cuernavaca, México. Atmosphere. 2024; 15(4):409. https://doi.org/10.3390/atmos15040409
Chicago/Turabian StyleBrito-Hernández, Alhelí, Hugo Saldarriaga-Noreña, Mauricio Rosales-Rivera, Maria-Luisa García-Betancourt, Mario Alfonso Murillo-Tovar, Mariana Romero-Aguilar, Violeta Mugica-Alvarez, José de Jesús Díaz-Torres, and José de Jesús Figueroa-Lara. 2024. "Risk Estimation of Heavy Metals Associated with PM2.5 in the Urban Area of Cuernavaca, México" Atmosphere 15, no. 4: 409. https://doi.org/10.3390/atmos15040409
APA StyleBrito-Hernández, A., Saldarriaga-Noreña, H., Rosales-Rivera, M., García-Betancourt, M. -L., Murillo-Tovar, M. A., Romero-Aguilar, M., Mugica-Alvarez, V., Díaz-Torres, J. d. J., & Figueroa-Lara, J. d. J. (2024). Risk Estimation of Heavy Metals Associated with PM2.5 in the Urban Area of Cuernavaca, México. Atmosphere, 15(4), 409. https://doi.org/10.3390/atmos15040409