State-of-the-Art Low-Cost Air Quality Sensors, Assemblies, Calibration and Evaluation for Respiration-Associated Diseases: A Systematic Review
Abstract
:1. Introduction
2. Bibliometric Analysis of IAQ and Indoor Epidemiology Correlation
3. Indoor Air Quality Assessment for Indoor Epidemiology
- Indoor air pollutant exposure limits;
- Air Quality Standards;
- Air quality mapping (AQMap);
- Air Quality Management Plan (AQMP).
3.1. Indoor Air Pollutant Exposure Limits
3.2. Indoor Air Quality Standards
- IAQ sensors must have range tables, magnitude specifications, and IAQ standard- and building certification-focused sampling rates to cover the respiratory disease exposure thresholds and probabilities.
- Indoor pollutants in IAQ standards are not enough to cover indoor respiratory diseases. The toxins, allergens, and poisonous VOC exo-metabolites must be also measured with a dispersion probability for pollen, spores, molds, etc.
3.3. Air Quality Mapping (AQMap)
3.4. Air Quality Management Plan (AMQP)
3.5. Impact of Outdoor Air Quality on Indoor Air Quality and Associated AQIs
4. Indoor Epidemiology-Focused Air Quality Gas Sensor (AQ-GS) Technologies
4.1. Optical Gas Sensors (OGSs)
4.2. Electrochemical Gas Sensors (ECSs)
4.3. Capacitive Gas Sensors (CGSs)
4.4. Low-Cost Calorimetric Gas Sensors (CMGSs)
4.5. Low-Cost Acoustic Gas Sensors (AGSs)
4.6. Effectiveness of Gas Sensing Technologies and Respiratory Disease Approximation
4.7. Limitations of Gas Sensing Technologies Based on Different Parameters
5. Indoor Epidemiology-Focused AQ Measurement Configurations and Assemblies
5.1. Gas Sensor Arrays and Grids Based on System-on-Module (SoM) Approach
5.2. Gas Sensor Array-on-Chip-Based SOI
6. Indoor Epidemiology-Based Calibration and Testing of AQ Gas Sensors
6.1. Uni-Gas Uni-Sensor Calibration
6.2. Uni-Gas Multi-Sensor ENB Calibration
6.3. IoT-Based Networked Multi-Gas ENB Calibration
6.4. Climate Smart Heterogeneous ENB Calibration
6.5. Epidemiological Scalability through Calibration Approaches in Non-Invasive Diagnosis
- A precise calibration Scale, such as a 24 h interval, ensures consistent accuracy, while the system setup cost for deploying 10 sensors directly influences the feasibility of widespread implementation;
- Supporting multiple sensor types allows for a comprehensive assessment, facilitating a detailed understanding of specific respiratory health concerns related to diverse indoor air contaminants;
- The combination of IoT support and remote calibration enables real-time adjustments, ensuring continuous accuracy;
- The cost-effectiveness of calibration activities directly impacts operational expenses;
- Real-time AQI-based climate-focused calibration tailors adjustments to specific climate conditions, enhancing the precision of health-related data;
- ML/DL model-in-loop support integrates advanced learning models, contributing to the adaptability and diagnostic capabilities of the system.
7. Indoor Epidemiology and Respiratory Diseases
8. Practical Considerations in Real-World Deployment of Low-Cost AQ Sensors for Indoor Respiratory Conditions and Disease Diagnosis
9. Future Recommendations and Research Directions
- In OGSs, the exploration of advanced materials such as chalcogenide glasses, perovskite nanocrystals, and quantum dots to enhance sensing performance is needed along with the investigation of novel photonic crystal architectures and fiber optic configurations for improved sensitivity and selectivity. Likewise, innovation in standardized testing methodologies such as EPA Method TO-15 and ASTM D6348 to ensure consistent sensor performance across diverse environments can be a future promise while ensuring focus on miniaturization techniques and biocompatible materials, like graphene derivatives, for healthcare applications.
- For ECSs, novel investigation in nanomaterial-enabled ECS platforms with tailored electrode configurations for enhanced selectivity through the development of advanced signal processing techniques, such as cyclic voltammetry (CV) and impedance spectroscopy (EIS) for improved analytical capabilities, can be new horizons to explore. Additionally, the standardization of calibration methodologies using EPA Method 325 and ASTM D6245 to address complex gas matrices should be looked at from the perspective of the integration of metal–organic frameworks (MOFs) and zeolitic imidazolate frameworks (ZIFs) to enhance long-term stability.
- The future challenges in potential research on CGSs can be overcome by researching dielectric materials such as metal oxides, perovskites, and two-dimensional materials like graphene and transition metal dichalcogenides (TMDs). This can be matured using gas-specific calibration methods based on EPA Method 25A and ASTM D7419, alongside humidity compensation strategies, while investigating flexible substrate materials such as polydimethylsiloxane (PDMS) derivatives for wearable applications. Furthermore, novel standardization testing protocols using ASTM D7419 and ISO 10156 to ensure accuracy and reliability can be improved.
- The potential for scientific investigation into CMGSs can be explored using sensitive calorimetric materials such as noble metal nanostructures and metal–organic frameworks (MOFs) for enhanced detection capabilities to develop dynamic response kinetics through advanced signal processing algorithms and thermodynamic modeling frameworks. From the standardization aspect, analytical techniques like isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) for quantitative analysis along with energy-efficient designs and materials to improve overall sensor performance and efficiency can be very promising.
- In the niche of AGSs, much potential in investigating piezoelectric materials like lead zirconate titanate (PZT) and aluminum nitride (AlN) for enhanced acoustic wave propagation exists to develop gas discrimination methodologies using advanced algorithms such as principal component analysis (PCA) and neural networks. This can further be harnessed by employing standardized testing protocols like ASTM E2079 and ISO 11095 to ensure robust sensor performance in various environments. In addition, interdisciplinary approaches integrating complex materials, like carbon nanotube (CNT) composites and graphene-based heterostructures for improved sensitivity and selectivity, should be explored.
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Available online: https://platform.who.int/mortality/themes/theme-details/topics/topic-details/MDB/respiratory-diseases (accessed on 29 February 2024).
- Bruce, N.; Perez Padilla, R.; Albalak, R. Indoor air pollution in developing countries: A major environmental and public health challenge. Bull. World Health Organ. 2000, 78, 1078–1092. [Google Scholar] [PubMed]
- Hasselback, P.; Taylor, E. Air Quality Health Index Variation across British Columbia; British Columbia Ministry of Environment: Victoria, BC, Canada, 2010.
- NC. EPA-456/F-14-002; A Guide to Air Quality and Your Health. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Outreach and Information Division. Research Triangle Park: Washington, DC, USA, 2014.
- EPA-456/K-07-001; The Plain English Guide to the Clean Air Act. United States Office of Air Quality Planning and Standards, Environmental Protection Agency. Research Triangle Park: Washington, DC, USA, 2007.
- Xie, X.; Semanjski, I.; Gautama, S.; Tsiligianni, E.; Deligiannis, N.; Rajan, R.T.; Pasveer, F.; Philips, W. A Review of Urban Air Pollution Monitoring and Exposure Assessment Methods. ISPRS Int. J. Geo-Inf. 2017, 6, 389. [Google Scholar] [CrossRef]
- Thomas, J.M. Sir Humphry Davy and the coal miners of the world: A commentary on Davy (1816), ‘An account of an invention for giving light in explosive mixtures of fire-damp in coal mines’. Philos. Trans. A 2014, 373, 20140288. [Google Scholar] [CrossRef] [PubMed]
- Setiawan, A.; Friggieri, J.; Kennedy, E.M.; Dlugogorski, B.Z.; Stockenhuber, M. Catalytic combustion of ventilation air methane (VAM)—Long term catalyst stability in the presence of water vapour and mine dust. Catal. Sci. Technol. 2014, 4, 1793–1802. [Google Scholar] [CrossRef]
- Tariq, H.; Touati, F.; Crescini, D.; Mnaouer, A.B. IoT-Based Bi-Cluster Forecasting Using Automated ML-Model Optimization for COVID-19. Atmosphere 2023, 14, 534. [Google Scholar] [CrossRef]
- Ferrer-Cid, P.; Garcia-Calvete, J.; Main-Nadal, A.; Ye, Z.; Barcelo-Ordinas, J.M.; Garcia-Vidal, J. Sampling Trade-Offs in Duty-Cycled Systems for Air Quality Low-Cost Sensors. Sensors 2022, 22, 3964. [Google Scholar] [CrossRef]
- Turner, A.P. Biosensors—Sense and sensitivity. Science 2000, 290, 1315–1317. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.M. Over-the-Counter Biosensors: Past, Present, and Future. Sensors 2008, 8, 5535–5559. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; de Alda, M.J.L.; Barceló, D. Biosensors as Useful Tools for Environmental Analysis and Monitoring. Anal. Bioanal. Chem. 2006, 386, 1025–1041. [Google Scholar] [CrossRef]
- Allsop, T.; Neal, R.; Davies, E.M.; Mou, C.; Bond, P.; Rehman, S.; Kalli, K.; Webb, D.J.; Calverhouse, P.; Bennion, I. Low refractive index gas sensing using a surface plasmon resonance fibre device. Meas. Sci. Technol. 2010, 21, 094029. [Google Scholar] [CrossRef]
- World Health Organization. World Health Organisation: Data and Statistics; World Health Organization: Geneva, Switzerland, 2017.
- Gillis, D.; Semanjski, I.; Lauwers, D. How to Monitor Sustainable Mobility in Cities? Literature Review in the Frame of Creating a Set of Sustainable Mobility Indicators. Sustainability 2016, 8, 29. [Google Scholar] [CrossRef]
- Kanaroglou, P.S.; Jerrett, M.; Morrison, J.; Beckerman, B.; Arain, M.A.; Gilbert, N.L.; Brook, J.R. Establishing an air pollution monitoring network for intra-urban population exposure assessment: A location-allocation approach. Atmos. Environ. 2005, 39, 2399–2409. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, T.; Zheng, J.; Zhang, R.Y.; Zhang, S.Q.; Xie, X.X.; Han, Y.Q.; Li, Y. Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics. Atmos. Chem. Phys. 2009, 9, 8247–8263. [Google Scholar] [CrossRef]
- Amit, K. A review on Air Quality Indexing system. Asian J. Atmos. Environ. 2015, 9-2, 101–113. [Google Scholar]
- Bezuglaya, E.Y. Air Pollution Index and Interpretation of Measurements of Toxic Pollutant Concentrations. Atmos. Environ. 1993, 27, 773–779. [Google Scholar] [CrossRef]
- Yao, J.; Stieb, D.M.; Taylor, E.; Henderson, S.B. Assessment of the Air Quality Health Index (AQHI) and four alternate AQHI-Plus amendments for wildfire seasons in British Columbia. Can. J. Public Health 2020, 111, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Yerramilli, A.; Dodla, V.B.R.; Yerramilli, S. Air Pollution, Modeling and GIS based Decision Support Systems for Air Quality Risk Assessment. In Advanced Air Pollution; IntechOpen: London, UK, 2011. [Google Scholar]
- Bozyazi, E.; Incecik, S.; Mannaerts, C.; Brussel, M. Analysis and mapping of air pollution using a GIS approach: A case study of Istanbul. Air Pollut. 2000, 42, 10. [Google Scholar]
- Kumar, A.; Gupta, I.; Brandt, J.; Kumar, R.; Dikshit, A.K.; Patil, R.S. Air quality mapping using GIS and economic evaluation of health impact for Mumbai City, India. J. Air Waste Manag. Assoc. 2016, 66, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Dimitroulopoulou, S.; Dudzińska, M.R.; Gunnarsen, L.; Hägerhed, L.; Maula, H.; Singh, R.; Toyinbo, O.; Haverinen-Shaughnessy, U. Indoor air quality guidelines from across the world: An appraisal considering energy saving, health, productivity, and comfort. Environ. Int. 2023, 178, 108127. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; En, S.C.F.; Elkamel, A.; Ahmadi, L.; Yetilmezsoy, K. A review of standards and guidelines set by international bodies for the parameters of indoor air quality. Atmos. Pollut. Res. 2015, 6, 751–767. [Google Scholar] [CrossRef]
- Wei, G.; Yu, X.; Fang, L.; Wang, Q.; Tanaka, T.; Amano, K.; Yang, X. A review and comparison of the indoor air quality requirements in selected building standards and certifications. Build. Environ. 2022, 226, 109709. [Google Scholar] [CrossRef]
- IEA; IRENA; UNSD; WB; WHO. Tracking SDG 7: The Energy Progress Report 2019; International Bank for Reconstruction and Development, The World Bank: Washington, DC, USA, 2019.
- Smith, K.R.; Samet, J.M.; Romieu, I.; Bruce, N. Indoor air pollution in developing countries and acute lower respiratory infections in children. Thorax 2000, 55, 518–532. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Risks: Mortality and Burden of Diseases Attributable to Selected Major Risks; World Health Organization: Geneva, Switzerland, 2014.
- Parajuli, I.; Lee, H.; Shrestha, K.R. Indoor air quality and ventilation assessment of rural mountainous households of Nepal. Int. J. Sustain. Built Environ. 2016, 5, 301–311. [Google Scholar] [CrossRef]
- Wendling, Z.A.; Zomer, A. Environmental Performance Index; Yale Center for Environmental Law & Policy: New Haven, CT, USA, 2018. [Google Scholar]
- World Health Organization. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005. Summary of Risk Assessment; World Health Organization: Geneva, Switzerland, 2005.
- Lewis, A.; Edwards, P. Validate personal air-pollution sensors. Nature 2016, 535, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; Lesne, O.; Alexandre, N.; Mangin, A.; Collomp, R. Air quality trends and potential health effects—Development of an aggregate risk index. Atmos. Environ. 2011, 45, 1145–1153. [Google Scholar] [CrossRef]
- Elen, B.; Peters, J.; Van Poppel, M.; Bleux, N.; Theunis, J.; Reggente, M.; Standaert, A. The Aeroflex: A Bicycle for Mobile Air Quality Measurements. Sensors 2012, 13, 221–240. [Google Scholar] [CrossRef] [PubMed]
- Cannistraro, G.; Ponterio, L. Analysis of Air Quality in the Outdoor Environment of the City of Messina by an Application of the Pollution Index Method. Int. J. Civ. Environ. Eng. 2009, 3, 262–268. [Google Scholar]
- Cincinelli, A.; Martellini, T. Indoor air quality and health. Int. J. Environ. Res. Public Health 2017, 14, 1286. [Google Scholar] [CrossRef] [PubMed]
- Haq, G.; Schwela, D. (Eds.) A Strategic Framework for Air Quality Management in Asia; Technical Report; Stockholm Environment Institute: Stockholm, Sweden, 2004; ISBN 89-8464-095-6. [Google Scholar]
- Haq, G.; Schwela, D.; David, L. (Eds.) Foundation Course on Air Quality Management in Asia; SEI: Oaks, PA, USA, 2008. [Google Scholar]
- Naess, L. Clean Air Act Advisory Committee Meeting; OAQPS: Washington, DC, USA, 2008.
- Vitolo, C.; Scutari, M.; Ghalaieny, M.; Tucker, A.; Russell, A. Modeling Air Pollution, Climate, and Health Data Using Bayesian Networks: A Case Study of the English Regions. Earth Space Sci. 2018, 5, 76–88. [Google Scholar] [CrossRef]
- Sivertsen, B.; Bartonov, A. Air Quality Management Planning (AMQP). Chem. Ind. Chem. Eng. Q. 2012, 18, 667–674. [Google Scholar] [CrossRef]
- Larssen, S.; Gram, F.; Haugsbakk, I. URBAIR. Urban air quality management strategy in Asia. In Kathmandu Valley City Specific Report; NILU Kjeller: Kjeller, Norway, 1995. [Google Scholar]
- Dimitroulopoulou, C.; MAshmore, R.; Hill, M.T.R.; Byrne, M.A.; Kinnersley, R. INDAIR: A probabilistic model of indoor air pollution in UK homes. Atmos. Environ. 2006, 40, 6362–6379. [Google Scholar] [CrossRef]
- Mohammadi, M.; Calautit, J. Quantifying the Transmission of Outdoor Pollutants into the Indoor Environment and Vice Versa—Review of Influencing Factors, Methods, Challenges and Future Direction. Sustainability 2022, 14, 10880. [Google Scholar] [CrossRef]
- Karagulian, F.; Gerboles, M.; Barbiere, M.; Kotsev, A.; Lagler, F.; Borowiak, A. Review of Sensors for Air Quality Monitoring; Joint Research Centre (JRC) Technical Reports; JRC Publications Repository: Longitude, Belgium, 2019. [Google Scholar]
- Alexandre, M.; Gerboles, M. Review of small commercial sensors for indicative monitoring of ambient gas. Chem. Eng. Trans. 2012, 30, 169–174. [Google Scholar]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.K. Non-Dispersive Infrared Gas Sensing Technology: A Review. IEEE Sens. J. 2022, 22, 6–15. [Google Scholar] [CrossRef]
- Yoo, K.S. Gas Sensors for Monitoring Air Pollution. In Monitoring, Control and Effects of Air Pollution; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Huang, C.M.; Liu, Y.-J.; Hsieh, Y.-J.; Lai, W.-L.; Juan, C.-Y.; Chen, S.-Y.; Yang, C.-C.; Wu, C.-M. A multi-gas sensing system for air quality monitoring. In Proceedings of the 2018 IEEE International Conference on Applied System Invention, Chiba, Japan, 13–17 April 2018. [Google Scholar]
- Nasir, Z.A. Environmental Health in Built Environments. In Aerosol Science: Technology and Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Kawasaki, H.; Ueda, T.; Suda, Y.; Ohshima, T. Optical Emission Spectroscopy of Low-Discharge-Power Magnetron Sputtering Plasmas Using Pure Tungsten Target. Sens. Actuators B 2004, 49, 08JF04. [Google Scholar]
- Yasmeen, R.; Ali, Z.; Tyrrel, S.; Nasir, Z.A. Assessment of Respiratory Problems in Workers Associated with Intensive Poultry Facilities in Pakistan. Saf. Health Work 2020, 11, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 012004. [Google Scholar] [CrossRef]
- Bakker, E.; Telting-Diaz, M. Electrochemical Sensors. Anal. Chem. 2004, 74, 2781–2800. [Google Scholar] [CrossRef]
- Cretescu, I.; Lutic, D.; Manea, L.R. Electrochemical Sensors for Monitoring of Indoor and Outdoor Air Pollution; IntechOpen: London, UK, 2017. [Google Scholar]
- Tierney, M.J.; Kim, H.O.L. Electrochemical gas sensor with extremely fast response times. Anal. Chem. 1993, 65, 3435–3440. [Google Scholar] [CrossRef]
- Park, C.O.; Fergus, J.W.; Miura, M.; Park, J.; Choi, A. Solid-state electrochemical gas sensors. Ionics 2009, 12, 107–119. [Google Scholar] [CrossRef]
- Ishihara, T.; Matsubara, S. Capacitive Type Gas Sensors. J. Electroceram. 1998, 2, 215–228. [Google Scholar] [CrossRef]
- Schoeneberg, U.; Hosticka, B.; Zimmer, G.; Maclay, G. A novel readout technique for capacitive gas sensors. Sens. Actuators B Chem. 1990, 1, 58–61. [Google Scholar] [CrossRef]
- Briand, D.; Colin, S.; Courbat, J.; Raible, S.; Kappler, J.; Derooij, N. Integration of MOX gas sensors on polyimide hotplates. Sens. Actuators B Chem. 2008, 130, 430–435. [Google Scholar] [CrossRef]
- Amirola, J.; Rodiguez, A.; Castaner, L. Design fabrication and test of micromachined-silicon capacitive gas sensors with integrated readout. Proc. Smart Sens. Actuators MEMS 2003, 5116, 92–99. [Google Scholar]
- Oberländer, J.; Kirchner, P.; Boyen, H.; Schöning, M.J. Detection of hydrogen peroxide vapor by use of manganese (IV) oxide as catalyst for calorimetric gas sensors. Phys. Status Solidi (A) Appl. Mater. 2014, 211, 1372–1376. [Google Scholar] [CrossRef]
- Riegel, J.; Härdt, K.H. Analysis of combustible gases in air with calorimetric gas sensors based on semiconducting BaTiO3 ceramics. Sens. Actuators B Chem. 1990, 1, 54–57. [Google Scholar] [CrossRef]
- Kirchner, P.; Oberländer, J.; Friedrich, P.; Berger, J.; Rysstad, G.; Keusgen, M.; Schöning, M.J. Realization of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry. Sens. Actuators B Chem. 2012, 5, 264–267. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Zhang, Y.; Pan, Y.; Liang, Y.; Li, J. Enhanced Sensitivity of a Hydrogen Sulfide Sensor Based on Surface Acoustic Waves at Room Temperature. Sensors 2018, 18, 3796. [Google Scholar] [CrossRef]
- Macías, M.M.; Agudo, J.E.; Manso, A.G.; Orellana, C.J.G.; Velasco, H.M.G.; Caballero, R.G. A Compact and Low Cost Electronic Nose for Aroma Detection. Sensors 2013, 13, 5528–5541. [Google Scholar] [CrossRef]
- Shahid, A.; Choi, J.-H.; Rana, A.U.H.S.; Kim, H.-S. Least Squares Neural Network-Based Wireless E-Nose System Using an SnO2 Sensor Array. Sensors 2018, 18, 1446. [Google Scholar] [CrossRef] [PubMed]
- Fahad, H.M.; Shiraki, H.; Amani, M.; Zhang, C.; Hebbar, V.S.; Gao, W.; Javey, A. Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors. Sci. Adv. 2017, 3, e1602557. [Google Scholar] [CrossRef]
- Prasad, P.; Raut, P.; Goel, S.; Barnwal, R.P.; Bodhe, G.L. Electronic nose and wireless sensor network for environmental monitoring application in pulp and paper industry: A review. Environ. Monit. Assess 2022, 194, 855. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Tian, F.; Feng, J.; Jia, P.; He, Q.; Shen, Y. A PSO-SVM Method for Parameters and Sensor Array Optimization in Wound Infection Detection based on Electronic Nose. J. Comput. Phys. 2012, 7, 2663–2670. [Google Scholar] [CrossRef]
- Hung, C.M.; Le, D.T.T.; Van Hieu, N. On-chip growth of semiconductor metal oxide nanowires for gas sensors: A review. J. Sci. Adv. Mater. Devices 2017, 2, 263–285. [Google Scholar] [CrossRef]
- Gäbel, P.; Koller, C.; Hertig, E. Development of Air Quality Boxes Based on Low-Cost Sensor Technology for Ambient Air Quality Monitoring. Sensors 2022, 22, 3830. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, C.S.; Soman, R.; Rudraswamy, S.B.; Nayak, M.; Bhat, N. Single Chip Gas Sensor Array for Air Quality Monitoring. IEEE J. Microelectromech. Syst. 2017, 26, 433–439. [Google Scholar] [CrossRef]
- Zhang, Y.-G.; Tian, Z.-B.; Zhang, X.-J.; Gu, Y.; Li, A.-Z.; Zhu, X.-R.; Zheng, Y.-L.; Liu, S. An Innovative Gas Sensor with On-Chip Reference Using Monolithic Twin Laser. Chin. Phys. Lett. 2017, 24, 2839. [Google Scholar]
- Zhang, G.; Zhang, S.; Yang, L.; Zou, Z.; Zeng, D.; Xie, C. La2O3-sensitized SnO2 nanocrystalline porous film gas sensors and sensing mechanism toward formaldehyde. Sens. Actuators B Chem. 2013, 188, 137–146. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef]
- Casey, J.G.; Hannigan, M.P. Testing the performance of field calibration techniques for low-cost gas sensors in new deployment locations: Across a county line and across Colorado. Atmos. Meas. Tech. 2018, 11, 6351–6378. [Google Scholar] [CrossRef]
- Leidinger, M.; Schultealbert, C.; Neu, J.; Schuetze, A.; Sauerwald, T. Characterization and calibration of gas sensor systems at ppb level—A versatile test gas generation system. Meas. Sci. Technol. 2017, 29, 015901. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; He, A.; Tang, Z.-A. A Method for Selecting Optimal Number of Sensors to Improve the Credibility. J. Sens. 2016, 2016, 8914769. [Google Scholar] [CrossRef]
- Fonollosa, J.; Rodríguez-Luján, I.; Huerta, R. Chemical gas sensor array dataset. Data Brief 2015, 3, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Benammar, M.A.; Ahmad, S.H.M.; Abdaoui, A.; Tariq, H.; Touati, F.; Al-Hitmi, M.; Crescini, D. A Smart Rig for Calibration of Gas Sensor Nodes. Sensors 2020, 20, 2341. [Google Scholar] [CrossRef] [PubMed]
- Maag, B.; Zhou, Z.; Thiele, L. A Survey on Sensor Calibration in Air Pollution Monitoring Deployments. IEEE Internet Things J. 2018, 5, 4857–4870. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sens. Actuators B Chem. 2015, 215, 249–257. [Google Scholar] [CrossRef]
- Mijling, B.; Jiang, Q.; de Jonge, D.; Bocconi, S. Field calibration of electrochemical NO2 sensors in a citizen science context. Atmos. Meas. Technol. 2018, 11, 1297–1312. [Google Scholar] [CrossRef]
- Hagan, D.H.; Isaacman-VanWertz, G.; Franklin, J.P.; Wallace, L.M.M.; Kocar, B.D.; Heald, C.L.; Kroll, J.H. Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments. J. Atmos. Meas. Technol. 2018, 11, 315–328. [Google Scholar] [CrossRef]
- Hasenfratz, D.; Saukh, O.; Thiele, L. On-the-fly calibration of low-cost gas sensors. In Proceedings of the 9th European Conference on Wireless Sensor Networks, Trento, Italy, 15–17 February 2012; pp. 228–244. [Google Scholar]
- Yang, F.; Geng, Z.; Koneru, A.; Zhi, M.; Li, H.; Wu, N. Dynamic calibration of electrochemical sensor for accelerated analytic quantification. IEEE Sens. J. 2012, 13, 1192–1199. [Google Scholar] [CrossRef]
- Tian, B.; Hou, K.M.; Diao, X.; Shi, H.; Zhou, H.; Wang, W. Environment-Adaptive Calibration System for Outdoor Low-Cost Electrochemical Gas Sensors. IEEE Access 2019, 7, 62592–62605. [Google Scholar] [CrossRef]
- Sayahi, T.; Kaufman, D.; Becnel, T.; Kaur, K.; Butterfield, A.; Collingwood, S.; Zhang, Y.; Gaillardon, P.-E.; Kelly, K. Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors. Environ. Pollut. 2019, 255, 113131. [Google Scholar] [CrossRef] [PubMed]
- Asghar, U.; Touati, F.; Crescini, D.; Galli, A.; Mnaouer, A.B. Development of Highly Efficient Multi-variable Wireless Sensor System Design for Energy Harvesting. arXiv 2018, arXiv:1802.05755. [Google Scholar]
- Luo, H.; Li, W.; Wu, X. Design of indoor air quality monitoring system based on wireless sensor network. Int. Wirel. Commun. Mob. Comput. Conf. 2019, 208, 012070. [Google Scholar] [CrossRef]
- Al-Ali, A.R.; Zualkernan, I.; Aloul, F. A Mobile GPRS-Sensors Array for Air Pollution Monitoring. IEEE Sens. J. 2010, 10, 1666–1671. [Google Scholar] [CrossRef]
- Penza, M.; Suriano, D.; Pfister, V.; Prato, M.; Cassano, G. Urban Air Quality Monitoring with Networked Low-Cost Sensor-Systems. Eurosensors 2017, 1, 573. [Google Scholar]
- Touati, F.; Legena, C.; Galli, A.; Crescini, D.; Crescini, P.; Mnaouer, A.B. Environmentally Powered Multiparametric Wireless Sensor Node for Air Quality Diagnostic. Sens. Mater. 2015, 27, 177–189. [Google Scholar]
- Kang, J.; Hwang, K.-I. A Comprehensive Real-Time Indoor Air-Quality Level Indicator. Sustainability 2016, 8, 881. [Google Scholar] [CrossRef]
- Abdaoui, A.; Touati, F.; Tariq, H.; Manouer, A.B. A Smart Rig for Calibration of Gas Sensor Nodes: Test and Deployment. In Proceedings of the 2020 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS), Hammamet, Tunisia, 7–10 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Tariq, H.; Abdaoui, A.; Touati, F.; Al-Hitmi, M.A.; Crescini, D.; Mnaouer, A.B. An Autonomous Multi-Variable Outdoor Air Quality Mapping Wireless Sensors IoT Node for Qatar. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 2164–2169. [Google Scholar] [CrossRef]
- Tariq, H.; Abdaoui, A.; Touati, F.; Al-Hitmi, M.A.; Crescini, D.; Manouer, A.B. A Real-time Gradient Aware Multi-Variable Handheld Urban Scale Air Quality Mapping IoT System. In Proceedings of the 2020 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS), Hammamet, Tunisia, 7–10 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Abdaoui, A.; Ahmad, S.H.; Tariq, H.; Touati, F.; Mnaouer, A.B.; Al-Hitmi, M. Energy Efficient Real-time Outdoor Air Quality Monitoring. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 2170–2176. [Google Scholar] [CrossRef]
- Allen, G. The Role of PM and Ozone Sensor Testing/Certification Programs. Available online: https://www.epa.gov/sites/production/files/session_07_b_allen.pdf (accessed on 12 March 2020).
- Smith, K.R.; Edwards, P.M.; Evans, M.J.; Lee, J.D.; Shaw, M.D.; Squires, F.; Wilde, S.; Lewis, A.C. Clustering approaches to improve the performance of low cost air pollution sensors. Faraday Discuss. 2017, 200, 621–637. [Google Scholar] [CrossRef]
- Hvidtfeldt, U.A.; Ketzel, M.; Sørensen, M.; Hertel, O.; Khan, J.; Brandt, J.; Raaschou-Nielsen, O. Evaluation of the Danish AirGIS air pollution modeling system against measured concentrations of PM2.5, PM10, and black carbon. Environ. Epidemiol. 2018, 2, e014. [Google Scholar]
- The EPA Village Green. Available online: https://archive.epa.gov/epa/air-research/village-green-project.html (accessed on 6 October 2020).
- Jiao, W.; Hagler, G.S.W.; Williams, R.W.; Sharpe, R.N.; Weinstock, L.; Rice, J. Field assessment of the village green project: An autonomous community air quality monitoring system. Environ. Sci. Technol. 2015, 49, 6085–6092. [Google Scholar] [CrossRef] [PubMed]
- EC WG, Guide to the Demonstration of Equivalence of Ambient Air Monitoring Methods, Report by EC Working Group on Guidance. 2010. Available online: http://ec.europa.eu/environment/air/quality/legislation/pdf/equivalence.pdf (accessed on 6 October 2020).
- D’Amico, A.; Di Natale, C. A contribution on some basic definitions of sensors properties. IEEE Sens. J. 2001, 1, 183–190. [Google Scholar] [CrossRef]
- Heimann, I.; Bright, V.; McLeod, M.; Mead, M.; Popoola, O.; Stewart, G.; Jones, R. Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors. Atmos. Environ. 2015, 113, 10–19. [Google Scholar] [CrossRef]
- Spinelle, L.; Aleixandre, M.; Gerboles, M. Protocol of Evaluation and Calibration of Low-Cost Gas Sensors for the Monitoring of Air Pollution; EUR 26112EN; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Viana, M.; Rivas, I.; Reche, C.; Fonseca, A.; Pérez, N.; Querol, X.; Alastuey, A.; Álvarez-Pedrerol, M.; Sunyer, J. Field comparison of portable and stationary instruments for outdoor urban air exposure assessments. Atmos. Environ. 2013, 123, 220–228. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe 2013 Report; EEA Report. No. 9/2013; European Environment Agency: Copenhagen, Denmark, 2013; 112p.
- European Environment Agency. Air Quality in Europe 2014 Report; EEA Report. No. 5/2014; European Environment Agency: Copenhagen, Denmark, 2014; 80p.
- Zhu, W.; Wang, J.; Zhang, W.; Sun, D. Short-term effects of air pollution on lower respiratory diseases and forecasting by the group method of data handling. Atmos. Environ. 2012, 51, 29–38. [Google Scholar] [CrossRef]
- Zhang, X.; Wargocki, P.; Lian, Z.; Thyregod, C. Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self-assessed acute health symptoms and cognitive performance. Indoor Air 2017, 27, 47–64. [Google Scholar] [CrossRef]
- Smith, R.L.; Kolenikov, S.; Cox, L.H. Spatiotemporal modeling of PM2.5 data with missing values. J. Geophys. Res. Atmos. 2003, 108, 9004. [Google Scholar] [CrossRef]
- Persily, A.; de Jonge, L. Carbon dioxide generation rates for building occupants. Indoor Air 2017, 27, 868–879. [Google Scholar] [CrossRef]
- Ramalho, O.; Wyart, G.; Mandin, C.; Blondeau, P.; Cabanes, P.-A.; Leclerc, N.; Mullot, J.-U.; Boulanger, G.; Redaelli, M. Association of carbon dioxide with indoor air pollutants andexceedance of health guideline values. Build. Environ. 2015, 93, 115–124. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 62.1-2013; Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2013.
- Azuma, K.; Kagi, N.; Yanagi, U.; Osawa, H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ. Int. 2018, 121, 51–56. [Google Scholar] [CrossRef]
- Ritter, M.; Müller, M.D.; Tsai, M.-Y.; Parlow, E. Air pollution modeling over very complex terrain: An evaluation of WRF-Chem over Switzerland for two 1-year periods. Atmos. Res. 2013, 132–133, 209–222. [Google Scholar] [CrossRef]
- Baklanov, A. Application of CFD Methods for Modelling in Air Pollution Problems: Possibilities and Gaps. Environ. Monit. Assess 2000, 65, 181–189. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Wu, Z.; Hu, D.; Pan, J.Z. Forecasting smog-related health hazard based on social media and physical sensor. Inf. Syst. 2017, 64, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Shimadera, H.; Kojima, T.; Kondo, A. Evaluation of Air Quality Model Performance for Simulating Long-Range Transport and Local Pollution of PM2.5 in Japan. Adv. Meteorol. 2016, 2016, 5694251. [Google Scholar] [CrossRef]
- World Health Organization. International Programme on Chemical Safety. Carbon Monoxide; World Health Organization: Geneva, Switzerland, 1999.
- Nhung, N.T.T.; Amini, H.; Schindler, C.; Joss, M.K.; Dien, T.M.; Probst-Hensch, N.; Perez, L.; Künzli, N. Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies. Environ. Pollut. 2017, 230, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Martínez-España, R.; Bueno-Crespo, A.; Timon-Perez, I.M.; Soto, J.A.; Munoz, A.; Cecilia, J.M. Air-pollution prediction in smart cities through machine learning methods: A case of study in Murcia, Spain. J. Univ. Comput. Sci. 2018, 24, 261–276. [Google Scholar]
- Kleine Deters, J.; Zalakeviciute, R.; Gonzalez, M.; Rybarczyk, Y. Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters. J. Electr. Comput. Eng. 2017, 2017, 5106045. [Google Scholar] [CrossRef]
- Carnevale, C.; Finzi, G.; Pederzoli, A.; Turrini, E.; Volta, M. Lazy Learning based surrogate models for air quality planning. Environ. Model. Softw. 2016, 83, 47–57. [Google Scholar] [CrossRef]
- Gacquer, D.; Delcroix, V.; Delmotte, F.; Piechowiak, S. Comparative study of supervised classification algorithms for the detection of atmospheric pollution. Eng. Appl. Artif. Intell. 2011, 24, 1070–1083. [Google Scholar] [CrossRef]
- Raub, J.A.; Mathieu-Nolf, M.; Hampson, N.B.; Thom, S.R. Carbon monoxide poisoning–A public health perspective. Toxicology 2000, 145, 1–14. [Google Scholar] [CrossRef]
- Rybarczyk, Y.; Zalakeviciute, R. Machine Learning Approaches for Outdoor Air Quality Modelling: A Systematic Review. Appl. Sci. 2018, 8, 2570. [Google Scholar] [CrossRef]
- Lu, W.Z.; Wang, W.J. Potential assessment of the ‘support vector’ machine method in forecasting ambient air pollution trends. Chemosphere 2015, 59, 693–701. [Google Scholar] [CrossRef]
- Luecken, D.; Hutzell, W.; Gipson, G. Development and analysis of air quality modeling simulations for hazardous air pollutants. Atmos. Environ. 2006, 40, 5087–5096. [Google Scholar] [CrossRef]
- Emmerich, S.J.; Persily, A.K. State-of-the-Art Review of CO2 Demand Controlled Ventilation Technology and Application; Diane Publishing: Darby, PA, USA, 2003; p. 43. [Google Scholar]
- Nguyen, D.L. A brief review of air quality models and their applications. Open J. Atmos. Clim. Chang. 2014, 1, 60–80. [Google Scholar]
- Nordiska, M. Interaction between Climate Change, Air Pollution and Related Impacts; Nordie Council of Ministers: Copenhagen, Denmark, 2014; ISBN 978-92-893-1791-7. [Google Scholar]
- R Foundation for Statistical Computing. R Development Core: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2001; ISBN 3-900051-07-0. [Google Scholar]
- Roadknight, C.M.; Balls, G.R.; Mills, G.E.; Palmer-Brown, D. Modeling complex environmental data. IEEE Trans. Neural Netw. 1997, 8, 852–862. [Google Scholar] [CrossRef]
- Walter, A.; Denhard, M.; Schönwiese, C.D. Simulation of global and hemispheric temperature variations and signal detection studies using neural networks. Meteorol. Z. 1998, 7, 171–180. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Z.; Lu, J.W. Three improved neural network models for air quality forecasting. Eng. Comput. 2003, 20, 192–210. [Google Scholar] [CrossRef]
- Thurston, G.D.; Spengler, J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Lary, D.J.; Lary, T.; Sattler, B. Using machine learning to estimate global PM2.5 for environmental health studies. Environ. Health Insights 2015, 9, EHI-S15664. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, Y.; Tsou, M.H.; Fu, X. Using social media to detect outdoor air pollution and monitor air quality index (AQI): A geo-targeted spatiotemporal analysis framework with Sina Weibo (Chinese twitter). PLoS ONE 2015, 10, e0141185. [Google Scholar] [CrossRef]
- Ye, Y.; Squartini, S.; Piazza, F. Online sequential extreme learning machine in nonstationary environments. Neurocomputing 2013, 116, 94–101. [Google Scholar] [CrossRef]
- Simpson, R.W. A statistical analysis of particulate data sets in Brisbane, Australia. Atmos. Environ. Part B Urban Atmos. 1992, 26, 99–105. [Google Scholar] [CrossRef]
- Tariq, H.; Alsageer, M.; Khattab, T.; Touati, F. Autonomous SkyCube Testbench using UAV-Assisted Ka-Band OFDM Transceiver. In Proceedings of the International Wireless Communications and Mobile Computing (IWCMC), Marrakesh, Morocco, 19–23 June 2023; pp. 780–785. [Google Scholar] [CrossRef]
- Han, P.; Mei, H.; Liu, D.; Zeng, N.; Tang, X.; Wang, Y.; Pan, Y. Calibrations of Low-Cost Air Pollution Monitoring Sensors for CO, NO2, O3, and SO2. Sensors 2021, 21, 256. [Google Scholar] [CrossRef] [PubMed]
- Tariq, H.; Shafaq, S. Real-time Contactless Bio-Sensors and Systems for Smart Healthcare using IoT and E-Health Applications. WSEAS Trans. Biol. Biomed. 2022, 19, 91–106. [Google Scholar] [CrossRef]
- Bauerová, P.; Šindelářová, A.; Rychlík, Š.; Novák, Z.; Keder, J. Low-Cost Air Quality Sensors: One-Year Field Comparative Measurement of Different Gas Sensors and Particle Counters with Reference Monitors at Tušimice Observatory. Atmosphere 2020, 11, 492. [Google Scholar] [CrossRef]
- Tariq, H.; Abdaoui, A.; Touati, F.; Al-Hitmi, M.A.E.; Crescini, D.; Mnaouer, A.B. Real-time Gradient-Aware Indigenous AQI Estimation IoT Platform. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 1666–1673. [Google Scholar] [CrossRef]
# | Description | References |
---|---|---|
1 | Keywords | Indoor air quality, indoor respiratory diseases, indoor pollutants, indoor epidemiology, epidemiology-focused sensors, epidemiology-focused air quality methods, epidemiology-focused systems. |
2 | Citations (5–2000) | [2000 1850 1475 1290 1050 800 590 482 440 408 254 232 5] |
3 | Years (50) | 2000 + [1 3 6 9 12 15 18 21 22] |
4 | Authors per paper (1–15) | [1 3 4 5 6 7 8 9 10 11 12 13 14 15] |
5 | Operators | WHO, NIH, CDC, US EPA, Methods, Policies, Rules, Approaches, Cases, Reports |
6 | Respiratory Diseases | Asthma, Chronic Obstructive Pulmonary Disease (COPD), Ischemic heart disease, Stroke, Pneumonia and Lower Respiratory Infections (LRIs), Lung Cancer, Sick Building Syndrome (SBS). |
Global Regulations | PM2.5 (µg/m3) | PM10 (µg/m3) | O₃ (ppb) | CO (ppm) | SO₂ (µg/m3) | NO₂ (µg/m3) |
---|---|---|---|---|---|---|
NAAQS [4] | 12.0 | 150.0 | 70.0 | 9.0 | 75.0 | 53.0 |
US EPA [23] | 12.0 | 150.0 | 70.0 | 9.0 | 75.0 | 53.0 |
EEA [21] | 25.0 | 50.0 | 180.0 | 10.0 | 125.0 | 40.0 |
WHO [13,15] | 10.0 | 20.0 | 100.0 | 4.0 | 20.0 | 40.0 |
CAQI [28] | 25.0 | 50.0 | 180.0 | 10.0 | 125.0 | 40.0 |
Outdoor Pollutants | Status | Indoor Atmosphere Impact |
---|---|---|
PM2.5 | Varied concentrations based on location | Infiltration of PM may degrade indoor air quality, influencing the overall atmosphere. |
NO2 | Variable levels near traffic and industry | NO2 infiltration can alter indoor chemical composition, impacting the atmospheric milieu. |
SO2 | Common near industrial sources | Infiltration introduces sulfur compounds, modifying indoor atmospheric conditions. |
O3 | Variable levels of sunlight and pollutants | Ozone infiltration may lead to oxidative reactions, influencing indoor atmospheric chemistry. |
VOCs | Emitted from various sources | VOC infiltration contributes to the overall composition, affecting odor and atmospheric makeup. |
Institutional-Level Indoor Epidemiological Merits | Uni-Gas Uni-Sensor Calibration | Uni-Gas Multi-Sensor ENB Calibration | IoT-Based Networked Multi-Gas ENB Calibration | Climate Smart Heterogeneous ENB Calibration |
---|---|---|---|---|
Calibration Scale (per 24 h) | 1–24 | 10–120 | 10–1840 | 10–144 |
System Setup Cost (per 10 sensors) | USD 2~5.1 M | USD 0.4~2 M | USD 1~1.8 M | USD 4~7 M |
Types of Sensors Supported | 4 | 4 | 5 | 5 |
IoT Support and Remote Calibration | No | No | Yes | No |
Calibration Cost (per 10 sensors) | USD 3–10 | USD 12–19 | USD 2–8 | USD 35–120 |
Real-time AQI-based Climate-Focused Calibration | No | No | No | Yes |
ML/DL Model-in-Loop Support | No | No | Yes | No |
# | Indoor Pollutants | Indoor Diseases and Health Problems |
---|---|---|
1 | PM2.5 and PM10 [94,95,96,97,98,99,100,101,102,103,104,105] | Heart or lung illness, nonfatal heart attacks, irregular heartbeats, worsened asthma, impaired lung function, and a rise in respiratory symptoms including coughing or trouble breathing. |
2 | NO2 [97,98,99,100] | At high quantities, it shortens breath and irritates the mucous membranes of the nose, throat, and eyes. Long-term inhalation of nitrogen dioxide can cause lung damage. It could result in persistent bronchitis. Those who have asthma and chronic obstructive lung disease may experience worsening symptoms from exposure to low levels (COPD). Also, it could make other respiratory illnesses worse. |
3 | CO [98,99,100,101,102] | Chronic headaches, nausea, stomach pain, vomiting, weakness, dizziness, fainting, confused mental neural response, exhaustion, loss of consciousness, seizure, and irreversible brain damage are some of the symptoms. In the worst scenarios, death is also conceivable. |
4 | CO2 [103,104,105,106] | Respiratory tract infections, chronic obstructive pulmonary disease (COPD), asthma, and rhinosinusitis. |
5 | VoCs [105,106,107,108] | Some VOCs are known or suspected carcinogens. Inflammation, including irritation of the eyes, nose, and throat; headaches and lack of coordination; nausea; liver, renal, or central nervous system damage. |
% | Respiratory Diseases | Fatalities Details |
---|---|---|
32% | Ischemic heart disease [108,109,110,111] | Affects 32% of people. Exposure to home air pollution is responsible for 12% of all fatalities from ischemic heart disease, or more than a million premature deaths yearly. |
23% | Stroke [112,113,114,115] | Accounts for 23% of deaths, with the usage of solid fuels and kerosene in the home contributing to household air pollution regularly, accounting for around 12% of all stroke deaths. |
21% | Pneumonia and Lower Respiratory Infections (LRIs) [116,117,118,119,120,121] | LRIs account for 21% of fatalities, and exposure to indoor air pollution nearly doubles the risk of childhood LRI and accounts for 44% of all pneumonia-related deaths in children under the age of five. Adults who have acute LRIs are in danger from household air pollution, which also causes 22% of all adult fatalities from pneumonia. |
19% | Chronic obstructive pulmonary disease (COPD) [122,123,124,125] | Accounts for 19% of cases. In low- and middle-income nations, exposure to home air pollution is the reason for 23% of all fatalities from COPD in adults. |
6% | Lung Cancer [126,127,128,129,130,131] | A total of 6% of lung cancer-related fatalities in adults are linked to exposure to carcinogens from home air pollution brought on by the use of kerosene or solid fuels like wood, charcoal, or coal. This exposure accounts for around 11% of lung cancer deaths in adults. |
USD ($) | Rooms Monitored (>100) | GSA/GSG Assemblies (>10X) | ||||||
---|---|---|---|---|---|---|---|---|
Cost Elements | OGS | ECS | CGS | MOS | OGS ENB | ECS ENB | CGS ENB | MOS ENB |
Lifeline Cost (K) [132,133,134,135] | 10 | 1.5 | 17.1 | 3.7 | 3.5 | 0.7 | 1.3 | 0.4 |
Manufacturing Setup Cost (M) [69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,136] | 23~40 | 18~29 | 7~13 | 33~80 | 13~17 | 8~11 | 9~10 | 3~5 |
Calibration Cost (K) [137,138,139,140] | 17 | 12 | 19 | 4 | 29 | 15 | 9.5 | 1.4 |
Adaptation Cost (K) [19,141,142,143,144] | 30 | 7 | 5 | 2 | 12 | 3 | 1.1 | 0.3 |
Sampling Rate Upgrade Cost (K) [45,46,47,48,49,50,51,52,53,54,55,56,57,58,145,146,147] | 3 | 11 | 9 | 1.2 | 0.2 | 0.9 | 0.3 | 0.12 |
Networked Sensing Cost (K) [148,150] | 1 | 1 | 1 | 1 | 1.7 | 0.1 | 0.1 | 0.1 |
Real-time AQI Mapping Cost (K) [144,151,152] | 0.7 | 2.3 | 3.7 | 1.3 | 0.5 | 1.6 | 9.5 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tariq, H.; Touati, F.; Crescini, D.; Ben Mnaouer, A. State-of-the-Art Low-Cost Air Quality Sensors, Assemblies, Calibration and Evaluation for Respiration-Associated Diseases: A Systematic Review. Atmosphere 2024, 15, 471. https://doi.org/10.3390/atmos15040471
Tariq H, Touati F, Crescini D, Ben Mnaouer A. State-of-the-Art Low-Cost Air Quality Sensors, Assemblies, Calibration and Evaluation for Respiration-Associated Diseases: A Systematic Review. Atmosphere. 2024; 15(4):471. https://doi.org/10.3390/atmos15040471
Chicago/Turabian StyleTariq, Hasan, Farid Touati, Damiano Crescini, and Adel Ben Mnaouer. 2024. "State-of-the-Art Low-Cost Air Quality Sensors, Assemblies, Calibration and Evaluation for Respiration-Associated Diseases: A Systematic Review" Atmosphere 15, no. 4: 471. https://doi.org/10.3390/atmos15040471
APA StyleTariq, H., Touati, F., Crescini, D., & Ben Mnaouer, A. (2024). State-of-the-Art Low-Cost Air Quality Sensors, Assemblies, Calibration and Evaluation for Respiration-Associated Diseases: A Systematic Review. Atmosphere, 15(4), 471. https://doi.org/10.3390/atmos15040471