Cloud Characteristics in South China Using Ka-Band Millimeter Cloud Radar Datasets
Abstract
:1. Introduction
2. Data and Methods
2.1. Data and Quality Control
2.2. Normalized Contoured Frequency by Altitude Diagrams
3. Results
3.1. Occurrence Frequency Variation
3.1.1. Seasonal Variation of Cloud Occurrence Frequency
3.1.2. Diurnal Variation of Cloud Occurrence Frequency
3.2. Flood Season Cloud Characteristics
3.2.1. Frequency Distribution of Cloud Top Height during Flood Seasons
3.2.2. Precipitation Cloud Vertical Structure and Seasonal Variation
3.2.3. Diurnal Variation in Precipitation Cloud Vertical Structure
3.2.4. Cloud Vertical Structure (CVS) under Different Precipitation Intensities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramanathan, V.; Cess, R.D.; Harrison, E.F.; Minnis, P.; Barkstrom, B.R.; Ahmad, E.; Hartmann, D. Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment. Science 1989, 243, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Vaideanu, P.; Ionita, M.; Voiculescu, M.; Rimbu, N. Deconstructing Global Observed and Reanalysis Total Cloud Cover Fields Based on Pacific Climate Modes. Atmosphere 2023, 14, 456. [Google Scholar] [CrossRef]
- Norris, J.R.; Allen, R.J.; Evan, A.T.; Zelinka, M.D.; O’Dell, C.W.; Klein, S.A. Evidence for Climate Change in the Satellite Cloud Record. Nature 2016, 536, 72. [Google Scholar] [CrossRef] [PubMed]
- Ravi Kiran, V.; Rajeevan, M.; Gadhavi, H.; Rao, S.V.B.; Jayaraman, A. Role of Vertical Structure of Cloud Microphysical Properties on Cloud Radiative Forcing over the Asian Monsoon Region. Clim. Dyn. 2015, 45, 3331–3345. [Google Scholar] [CrossRef]
- Feng, Z.; Leung, L.R.; Houze, R.A., Jr.; Hagos, S.; Hardin, J.; Yang, Q.; Han, B.; Fan, J. Structure and Evolution of Mesoscale Convective Systems: Sensitivity to Cloud Microphysics in Convection-Permitting Simulations Over the United States. J. Adv. Model. Earth Syst. 2018, 10, 1470–1494. [Google Scholar] [CrossRef]
- Dong, X.; Minnis, P.; Xi, B. A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility: Part I: Low-Level Cloud Macrophysical, Microphysical, and Radiative Properties. J. Clim. 2005, 18, 1391–1410. [Google Scholar] [CrossRef]
- Ye, Q.-Z. Forecasting Cloud Cover and Atmospheric Seeing for Astronomical Observing: Application and Evaluation of the Global Forecast System. Publ. Astron. Soc. Pac. 2011, 123, 113–124. [Google Scholar] [CrossRef]
- Fujiwara, M.; Sugidachi, T.; Arai, T.; Shimizu, K.; Hayashi, M.; Noma, Y.; Kawagita, H.; Sagara, K.; Nakagawa, T.; Okumura, S.; et al. Development of a Cloud Particle Sensor for Radiosonde Sounding. Atmos. Meas. Tech. 2016, 9, 5911–5931. [Google Scholar] [CrossRef]
- Narendra Reddy, N.; Venkat Ratnam, M.; Basha, G.; Ravikiran, V. Cloud Vertical Structure over a Tropical Station Obtained Using Long-Term High-Resolution Radiosonde Measurements. Atmos. Chem. Phys. 2018, 18, 11709–11727. [Google Scholar] [CrossRef]
- Wang, J.; Rossow, W.B.; Zhang, Y. Cloud Vertical Structure and Its Variations from a 20-Yr Global Rawinsonde Dataset. J. Clim. 2000, 13, 3041–3056. [Google Scholar] [CrossRef]
- Sharma, S.; Dass, A.; Mishra, A.K.; Singh, S.; Kumar, K. A Decadal Climatology of Cloud Vertical Structure over the Indo-Gangetic Plain Using Radiosonde and Radar Observations. Atmos. Res. 2022, 266, 105949. [Google Scholar] [CrossRef]
- Guo, J.; Miao, Y.; Zhang, Y.; Liu, H.; Li, Z.; Zhang, W.; He, J.; Lou, M.; Yan, Y.; Bian, L.; et al. The Climatology of Planetary Boundary Layer Height in China Derived from Radiosonde and Reanalysis Data. Atmos. Chem. Phys. 2016, 16, 13309–13319. [Google Scholar] [CrossRef]
- Luo, H.; Han, Y.; Dong, L.; Xu, D.; Ma, T.; Liao, J. Robust Variation Trends in Cloud Vertical Structure Observed from Three-Decade Radiosonde Record at Lindenberg, Germany. Atmos. Res. 2023, 281, 106469. [Google Scholar] [CrossRef]
- Geer, A.J.; Baordo, F.; Bormann, N.; Chambon, P.; English, S.J.; Kazumori, M.; Lawrence, H.; Lean, P.; Lonitz, K.; Lupu, C. The Growing Impact of Satellite Observations Sensitive to Humidity, Cloud and Precipitation. Q. J. R. Meteorol. Soc. 2017, 143, 3189–3206. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Chen, H.; Cribb, M. Validation of a Radiosonde-Based Cloud Layer Detection Method against a Ground-Based Remote Sensing Method at Multiple ARM Sites. J. Geophys. Res. Atmos. 2013, 118, 846–858. [Google Scholar] [CrossRef]
- Yang, P.; Hioki, S.; Saito, M.; Kuo, C.-P.; Baum, B.A.; Liou, K.-N. A Review of Ice Cloud Optical Property Models for Passive Satellite Remote Sensing. Atmosphere 2018, 9, 499. [Google Scholar] [CrossRef]
- Sassen, K.; Wang, Z. Classifying Clouds around the Globe with the CloudSat Radar: 1-Year of Results. Geophys. Res. Lett. 2008, 35, L04805. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Stamnes, K.; Wang, T.; Lv, Q.; Jin, H. A Global Survey of Cloud Overlap Based on CALIPSO and CloudSat Measurements. Atmos. Chem. Phys. 2015, 15, 519–536. [Google Scholar] [CrossRef]
- Hu, Y.; Winker, D.; Vaughan, M.; Lin, B.; Omar, A.; Trepte, C.; Flittner, D.; Yang, P.; Nasiri, S.L.; Baum, B.; et al. CALIPSO/CALIOP Cloud Phase Discrimination Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 2293–2309. [Google Scholar] [CrossRef]
- Choudhury, G.; Tesche, M. Estimating Cloud Condensation Nuclei Concentrations from CALIPSO Lidar Measurements. Atmos. Meas. Tech. 2022, 15, 639–654. [Google Scholar] [CrossRef]
- Luo, H.; Quaas, J.; Han, Y. Examining Cloud Vertical Structure and Radiative Effects from Satellite Retrievals and Evaluation of CMIP6 Scenarios. Atmos. Chem. Phys. 2023, 23, 8169–8186. [Google Scholar] [CrossRef]
- Sekiguchi, M.; Nakajima, T.; Suzuki, K.; Kawamoto, K.; Higurashi, A.; Rosenfeld, D.; Sano, I.; Mukai, S. A Study of the Direct and Indirect Effects of Aerosols Using Global Satellite Data Sets of Aerosol and Cloud Parameters. J. Geophys. Res. Atmos. 2003, 108, 4699. [Google Scholar] [CrossRef]
- Guo, J.; Liu, H.; Wang, F.; Huang, J.; Xia, F.; Lou, M.; Wu, Y.; Jiang, J.H.; Xie, T.; Zhaxi, Y.; et al. Three-Dimensional Structure of Aerosol in China: A Perspective from Multi-Satellite Observations. Atmos. Res. 2016, 178–179, 580–589. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Chen, H.; Yoo, H.; Cribb, M. Cloud Vertical Distribution from Radiosonde, Remote Sensing, and Model Simulations. Clim. Dyn. 2014, 43, 1129–1140. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Chiu, C.-H.; Lin, P.-H.; Min, M. Comparison of Cloud-Top Property Retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and Radiosonde. J. Geophys. Res. Atmos. 2020, 125, e2020JD032683. [Google Scholar] [CrossRef]
- Utrillas, M.P.; Marín, M.J.; Estellés, V.; Marcos, C.; Freile, M.D.; Gómez-Amo, J.L.; Martínez-Lozano, J.A. Comparison of Cloud Amounts Retrieved with Three Automatic Methods and Visual Observations. Atmosphere 2022, 13, 937. [Google Scholar] [CrossRef]
- Guyot, A.; Protat, A.; Alexander, S.P.; Klekociuk, A.R.; Kuma, P.; McDonald, A. Detection of Supercooled Liquid Water Containing Clouds with Ceilometers: Development and Evaluation of Deterministic and Data-Driven Retrievals. Atmos. Meas. Tech. 2022, 15, 3663–3681. [Google Scholar] [CrossRef]
- Yuan, Y.; Di, H.; Liu, Y.; Yang, T.; Li, Q.; Yan, Q.; Xin, W.; Li, S.; Hua, D. Detection and Analysis of Cloud Boundary in Xi’an, China, Employing 35 GHz Cloud Radar Aided by 1064 Nm Lidar. Atmos. Meas. Tech. 2022, 15, 4989–5006. [Google Scholar] [CrossRef]
- Borg, L.A.; Holz, R.E.; Turner, D.D. Investigating Cloud Radar Sensitivity to Optically Thin Cirrus Using Collocated Raman Lidar Observations. Geophys. Res. Lett. 2011, 38, L05807. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, G.; Zhaxi, S. Cloud Vertical Structure Measurements from a Ground-Based Cloud Radar over the Southeastern Tibetan Plateau. Atmos. Res. 2021, 258, 105629. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, L.; Zhang, Z.; Tong, Z.; Li, J.; Liu, F.; Zhang, J.; Jiang, Y. Characteristics of Clouds and Raindrop Size Distribution in Xinjiang, Using Cloud Radar Datasets and a Disdrometer. Atmosphere 2020, 11, 1382. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, L.; Wang, Q.; Qiu, Y.; Wang, Y.; Wu, X. MMCR-Based Characteristic Properties of Non-Precipitating Cloud Liquid Droplets at Naqu Site over Tibetan Plateau in July 2014. Atmos. Res. 2017, 190, 68–76. [Google Scholar] [CrossRef]
- Chen, Z.; Yin, L.; Chen, X.; Wei, S.; Zhu, Z. Research on the Characteristics of Urban Rainstorm Pattern in the Humid Area of Southern China: A Case Study of Guangzhou City. Int. J. Climatol. 2015, 35, 4370–4386. [Google Scholar] [CrossRef]
- Ye, L.; Liu, X.; Pu, Y.; Li, H.; Xia, F.; Xu, B. Contrasts in the Evolution and Microphysical Features of Two Convective Systems during a Heavy Rainfall Event along the Coast of South China. Atmosphere 2022, 13, 1549. [Google Scholar] [CrossRef]
- Shahi, N.K.; Rai, S.; Sahai, A.K. The Relationship between the Daily Dominant Monsoon Modes of South Asia and SST. Theor. Appl. Climatol. 2020, 142, 59–70. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, L.; Zeng, Z.; Xie, X.; Wu, J.; Feng, K. Ka-Band Millimeter Wave Cloud Radar Data Quality Control. J. Infrared Millim. Waves 2016, 35, 748–757. (In Chinese) [Google Scholar]
- Zheng, J.; Liu, L.; Chen, H.; Gou, Y.; Che, Y.; Xu, H.; Li, Q. Characteristics of Warm Clouds and Precipitation in South China during the Pre-Flood Season Using Datasets from a Cloud Radar, a Ceilometer, and a Disdrometer. Remote Sens. 2019, 11, 3045. [Google Scholar] [CrossRef]
- Yuter, S.E. Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity. Mon. Weather. Rev. 1995, 123, 1921–1940. [Google Scholar] [CrossRef]
- Guo, J.; Liu, H.; Li, Z.; Rosenfeld, D.; Jiang, M.; Xu, W.; Jiang, J.H.; He, J.; Chen, D.; Min, M.; et al. Aerosol-Induced Changes in the Vertical Structure of Precipitation: A Perspective of TRMM Precipitation Radar. Atmos. Chem. Phys. 2018, 18, 13329–13343. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Q.; Lv, S.; Jia, S.; Tao, F.; Chen, D.; Guo, J. Elucidating Cloud Vertical Structures Based on Three-Year Ka-Band Cloud Radar Observations from Beijing, China. Atmos. Res. 2019, 222, 88–99. [Google Scholar] [CrossRef]
- Fu, C.; Dan, L.; Lin, X.; Yang, F. Long-Term Change of Total Cloud Cover and Its Possible Reason over South China during 1960–2012. Atmos. Sci. Lett. 2019, 20, e943. [Google Scholar] [CrossRef]
- Chen, H.; Yu, R.; Wu, B. FY-2C-derived Diurnal Features of Clouds in the Southern Contiguous China. J. Geophys. Res. 2012, 117, D18101. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Guo, J.; Feng, J.; Cao, L.; Wang, Y.; Zhou, Q.; Li, L.; Li, B.; Xu, H.; et al. Climatology of Cloud-Base Height from Long-Term Radiosonde Measurements in China. Adv. Atmos. Sci. 2018, 35, 158–168. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, L.; Liu, F.; Li, J.; Zhou, Y. Macro-Micro Physical Characteristics of Rainfall Clouds in the West Tianshan Mountains Based on Ka-Band Cloud Radar. Chin. J. Atmos. Sci. 2023, 47, 756–768. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.; Lau, W.K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M.G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; et al. Aerosol and Monsoon Climate Interactions over Asia. Rev. Geophys. 2016, 54, 866–929. [Google Scholar] [CrossRef]
- Zhong, M.; Xiao, A.; Xu, G. Study on Probability Forecast Method about Graded Short-Term Heavy Rain Based on CMA-MESO. J. Arid. Meteorol. 2022, 40, 700–709. (In Chinese) [Google Scholar] [CrossRef]
- Xu, W.; Zipser, E.; Liu, C. Rainfall Characteristics and Convective Properties of Mei-Yu Precipitation Systems over South China, Taiwan, and the South China Sea. Part I: TRMM Observations. Mon. Weather. Rev. 2009, 137, 4261–4275. [Google Scholar] [CrossRef]
- He, J.; Zheng, J.; Zeng, Z.; Che, Y.; Zheng, M.; Li, J. A Comparative Study on the Vertical Structures and Microphysical Properties of Stratiform Precipitation over South China and the Tibetan Plateau. Remote Sens. 2021, 13, 2897. [Google Scholar] [CrossRef]
- Sukanya, P.; Kalapureddy, M.C.R. Cloud Microphysical Profile Differences Pertinent to Monsoon Phases: Inferences from a Cloud Radar. Meteorol. Atmos. Phys. 2019, 131, 1723–1738. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Mao, C.; Li, H.; Li, J.; Chen, B.; Zeng, L.; Zheng, J.; Liu, M. Cloud Characteristics in South China Using Ka-Band Millimeter Cloud Radar Datasets. Atmosphere 2024, 15, 486. https://doi.org/10.3390/atmos15040486
Li H, Mao C, Li H, Li J, Chen B, Zeng L, Zheng J, Liu M. Cloud Characteristics in South China Using Ka-Band Millimeter Cloud Radar Datasets. Atmosphere. 2024; 15(4):486. https://doi.org/10.3390/atmos15040486
Chicago/Turabian StyleLi, Haowen, Chengyan Mao, Huaiyu Li, Jieyi Li, Binghong Chen, Lin Zeng, Jiawen Zheng, and Mingtuan Liu. 2024. "Cloud Characteristics in South China Using Ka-Band Millimeter Cloud Radar Datasets" Atmosphere 15, no. 4: 486. https://doi.org/10.3390/atmos15040486
APA StyleLi, H., Mao, C., Li, H., Li, J., Chen, B., Zeng, L., Zheng, J., & Liu, M. (2024). Cloud Characteristics in South China Using Ka-Band Millimeter Cloud Radar Datasets. Atmosphere, 15(4), 486. https://doi.org/10.3390/atmos15040486