Characteristics of the Evolution of Precipitation Particles during a Stratiform Precipitation Event in Liupan Mountains
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area Introduction
2.2. Data Description
2.3. Cloud Particle and Precipitation Particle Identification Methods
2.4. The Proportion of Cloud Particles and Precipitation Particles
3. Results
3.1. Overview of Cloud Precipitation Processes
3.2. Characteristics of Precipitation Particles Detected by MRR
3.3. Precipitation Particle Identification based on CR
3.4. Spatiotemporal Evolution Characteristics of Precipitation Particles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McFarquhar, G.M.; Um, J.; Jackson, R. Small cloud particle shapes in mixed-phase clouds. J. Appl. Meteorol. Climatol. 2013, 52, 1277–1293. [Google Scholar] [CrossRef]
- Kiliani, J.; Baumgarten, G.; Lübken, F.-J.; Berger, U. Impact of particle shape on the morphology of noctilucent clouds. Atmos. Chem. Phys. 2015, 15, 12897–12907. [Google Scholar] [CrossRef]
- Morrison, H.; van Lier-Walqui, M.; Fridlind, A.M.; Grabowski, W.W.; Harrington, J.Y.; Hoose, C.; Korolev, A.; Kumjian, M.R.; Milbrandt, J.A.; Pawlowska, H.; et al. Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001689. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.B. Cloud microphysics and climate. Science 1997, 276, 1072–1078. [Google Scholar] [CrossRef]
- Ceppi, P.; Brient, F.; Zelinka, M.D.; Hartmann, D.L. Cloud feedback mechanisms and their representation in global climate models. WIREs Clim. Chang. 2017, 8, e465. [Google Scholar] [CrossRef]
- Lin, L.; Liu, X.; Fu, Q.; Shan, Y. Climate impacts of convective cloud microphysics in NCAR CAM5. J. Clim. 2023, 36, 3183–3202. [Google Scholar] [CrossRef]
- Wang, H.; Lei, H.; Yang, J. Microphysical processes of a stratiform precipitation event over eastern China: Analysis using micro rain radar data. Adv. Atmos. Sci. 2017, 34, 1472–1482. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Bansemer, A.; Theis, A.; Schmitt, C. Survival of snow in the melting layer: Relative humidity influence. J. Atmospheric Sci. 2021, 78, 1823–1845. [Google Scholar] [CrossRef]
- He, Y.; Shu, Z.; Zheng, J.; Jia, X.; Qiu, Y.; Deng, P.; Yan, X.; Lin, T.; Dang, Z.; Lu, C. A Comparative Study on the Vertical Structures and Microphysical Properties of a Mixed Precipitation Process over Different Topographic Positions of the Liupan Mountains in Northwest China. Atmosphere 2022, 14, 44. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, J.; Brandes, E.A. Improving parameterization of rain microphysics with disdrometer and radar observations. J. Atmospheric Sci. 2006, 63, 1273–1290. [Google Scholar] [CrossRef]
- Ashfaq, M.; Ghosh, S.; Kao, S.; Bowling, L.C.; Mote, P.; Touma, D.; Rauscher, S.A.; Diffenbaugh, N.S. Near-term acceleration of hydroclimatic change in the western U.S. J. Geophys. Res. Atmos. 2013, 118, 10676–10693. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Q.; Zhao, C.; Li, Z.; Wu, X.; Chen, J.; Yu, F.; Sun, J.; Shen, X. Impacts of transition approach of water vapor-related microphysical processes on quantitative precipitation forecasting. Atmosphere 2022, 13, 1133. [Google Scholar] [CrossRef]
- Shupe, M.D. A ground-based multisensor cloud phase classifier. Geophys. Res. Lett. 2007, 34, L22809. [Google Scholar] [CrossRef]
- Shupe, M.D.; Walden, V.P.; Eloranta, E.; Uttal, T.; Campbell, J.R.; Starkweather, S.M.; Shiobara, M. Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteorol. Climatol. 2011, 50, 626–644. [Google Scholar] [CrossRef]
- Song, X.; Zhai, X.; Liu, L.; Wu, S. Lidar and ceilometer observations and comparisons of atmospheric cloud structure at nagqu of tibetan plateau in 2014 Summer. Atmosphere 2017, 8, 9. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, L.; Wang, Q.; Qiu, Y.; Wang, W.; Wang, Y.; Fan, T. Toward Understanding the Properties of High Ice Clouds at the Naqu Site on the Tibetan Plateau Using Ground-Based Active Remote Sensing Measurements Obtained during a Short Period in July 2014. J. Appl. Meteorol. Clim. 2016, 55, 2493–2507. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, L.; Wang, Q.; Qiu, Y.; Wang, Y.; Wu, X. MMCR-based characteristic properties of non-precipitating cloud liquid droplets at Naqu site over Tibetan Plateau in July 2014. Atmos. Res. 2017, 190, 68–76. [Google Scholar] [CrossRef]
- Qiu, Y.; Lu, C.; Luo, S. Tibetan Plateau Cloud Structure and Cloud Water Content Derived from Millimeter Cloud Radar Observations in Summer. Pure Appl. Geophys. 2019, 176, 1785–1796. [Google Scholar] [CrossRef]
- Kollias, P.; Rémillard, J.; Luke, E.; Szyrmer, W. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications. J. Geophys. Res. 2011, 116, D13201. [Google Scholar] [CrossRef]
- Al-Sakka, H.; Boumahmoud, A.-A.; Fradon, B.; Frasier, S.J.; Tabary, P. A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars. J. Appl. Meteorol. Clim. 2013, 52, 2328–2344. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Zhang, G.; Xue, M.; Zhou, B.; Liu, S.; Chen, X. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. J. Geophys. Res. Atmos. 2016, 121, 2265–2282. [Google Scholar] [CrossRef]
- Das, S.K.; Konwar, M.; Chakravarty, K.; Deshpande, S.M. Raindrop size distribution of different cloud types over the Western Ghats using simultaneous measurements from Micro-Rain Radar and disdrometer. Atmos. Res. 2017, 186, 72–82. [Google Scholar] [CrossRef]
- Garcia-Benadi, A.; Bech, J.; Gonzalez, S.; Udina, M.; Codina, B.; Georgis, J.-F. Precipitation type classification of micro rain radar data using an improved doppler spectral processing methodology. Remote Sens. 2020, 12, 4113. [Google Scholar] [CrossRef]
- Foth, A.; Zimmer, J.; Lauermann, F.; Kalesse-Los, H. Evaluation of micro rain radar-based precipitation classification algorithms to discriminate between stratiform and convective precipitation. Atmos. Meas. Tech. 2021, 14, 4565–4574. [Google Scholar] [CrossRef]
- Ojo, J.S.; Daodu, O.O.; Ojo, O.L. Analysis of vertical profiles of precipitable liquid water content in a tropical climate using micro rain radar. J. Geosci. Environ. Prot. 2019, 7, 140–155. [Google Scholar] [CrossRef]
- Xu, R.; Qiu, Y. The Difference in Cloud Water Resources and Precipitation on the Eastern and Western Sides of the Liupan Mountains Caused by Topographic Effects. Atmosphere 2023, 14, 1502. [Google Scholar] [CrossRef]
- Dang, Z.L.; Chang, Z.L.; Cao, N.; Wang, M. Precision Evaluation of Micro Rain Radar Observations during a Stratiform Cloud Precipitation Process. Ningxia Eng. Technol. 2021, 20, 8–11+17. (In Chinese) [Google Scholar]
- Tian, L.; Sang, J.R.; Yao, Z.Y.; Chang, Z.L.; Shu, Z.L. Preliminary analysis of cloud macro characteristics over the Liupan mountain based on Ka-band cloud radar. J. Meteorol. Environ. 2021, 37, 84–90. (In Chinese) [Google Scholar]
- Sun, Y.Q.; Tang, D.Z.; Sang, J.R.; Wang, Y.; Lv, J.J. Quality control method and efficiency analysis on temperature data by RPG_HATPRO_G4 type ground-based microwave radiometer. Arid. Land Geogr. 2019, 42, 1282–1290. (In Chinese) [Google Scholar]
- Tian, L.; Sang, J.R.; Yao, Z.Y.; Chang, Z.L.; Shan, X.L.; Cao, L.; Sun, Y.Q. Characteristics of atmosphereic water vapor and liquid water in Liupan Mountain area in summer and autumn. J. Meteorol. Environ. 2019, 35, 28–37. (In Chinese) [Google Scholar]
- Heymsfield, A.J.; Bansemer, A.; Poellot, M.R.; Wood, N. Observations of ice microphysics through the melting layer. J. Atmos. Sci. 2015, 72, 2902–2928. [Google Scholar] [CrossRef]
Reflectivity Factor | Doppler Velocity | Spectrum Width | ||||
---|---|---|---|---|---|---|
Range (dbz) | Functions | Range (m/s) | Functions | Range (m/s) | Functions | |
Cld_Drops | [−40,−10) | 1 | [0,1) | 1 | [0,0.1) | 1 |
[−10,0) | (0 − Re)/10.0 | [1,5) | (5 − v)/4 | [0.1,0.5) | (0.5 − w)/0.4 | |
[0,50] | 0 | [5,11) | 0 | [0.5,2.3) | 0 | |
Precip_Particles | [−40,−10) | 0 | [0,1) | 0 | [0,0.1) | 0 |
[−10,10) | (10 − Re)/20.0 | [1.0,1.8) | (v − 1.0)/0.8 | [0.2,0.5) | (w − 0.2)/0.3 | |
[10,25) | 1 | [1.8,5.0) | (5.0 − v)/3.2 | [0.5,1.5) | (1.5 − v)/1.0 | |
[5.0,11) | 0 | [1.5,2.3) | 0 | |||
Raindrops | [−40,5) | 0 | [0,3.2) | 0 | ||
[5,25) | (Re − 5)/20.0 | [3.2,5.0) | (v − 3.2)/1.8 | [0.6,1.5) | (w − 0.6)/0.9 | |
[25,50) | 1 | [5.0,11) | 1 | [1.5,2.3) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Feng, N.; He, Y.; Xu, R.; Zhao, D. Characteristics of the Evolution of Precipitation Particles during a Stratiform Precipitation Event in Liupan Mountains. Atmosphere 2024, 15, 732. https://doi.org/10.3390/atmos15060732
Qiu Y, Feng N, He Y, Xu R, Zhao D. Characteristics of the Evolution of Precipitation Particles during a Stratiform Precipitation Event in Liupan Mountains. Atmosphere. 2024; 15(6):732. https://doi.org/10.3390/atmos15060732
Chicago/Turabian StyleQiu, Yujun, Nansong Feng, Ying He, Rui Xu, and Danning Zhao. 2024. "Characteristics of the Evolution of Precipitation Particles during a Stratiform Precipitation Event in Liupan Mountains" Atmosphere 15, no. 6: 732. https://doi.org/10.3390/atmos15060732
APA StyleQiu, Y., Feng, N., He, Y., Xu, R., & Zhao, D. (2024). Characteristics of the Evolution of Precipitation Particles during a Stratiform Precipitation Event in Liupan Mountains. Atmosphere, 15(6), 732. https://doi.org/10.3390/atmos15060732