Assessing Satellite Data’s Role in Substituting Ground Measurements for Urban Surfaces Characterization: A Step towards UHI Mitigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Ground Truth Data
2.4. Regions of Interest Identification
- Polyolefin roof.
- Aged tiles roof.
- New tiles roof.
- Asphalt parking.
- Bituminous membrane.
- Parking with cobblestones.
2.5. Methodology
2.5.1. Satellite Images
2.5.2. Ground Truth Data
- ρsol is the urban surface solar reflectance [-];
- ρ(λi) is the urban surface spectral reflectance [-];
- E(λi) is the solar spectral irradiance [W m−2];
- Δλi is the wavelength step [nm].
3. Results and Discussion
3.1. LST Analysis
3.2. Spectral Analysis
- SEM is the standard error of the mean;
- σ is the population standard deviation;
- n is the sample size.
3.3. Albedo Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oke, T.R. The heat island of the urban boundary layer: Characteristics, causes and effects. In Wind Climate in Cities; Springer: Dordrecht, The Netherlands, 1995; pp. 81–107. [Google Scholar]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Oke, T. Urban heat islands. In The Routledge Handbook of Urban Ecology; Routledge: London, UK, 2010. [Google Scholar]
- Piracha, A.; Chaudhary, M.T. Urban air pollution, urban heat island and human health: A review of the literature. Sustainability 2022, 14, 9234. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S.; Mall, R.K. Urban ecology and human health: Implications of urban heat island, air pollution and climate change nexus. In Urban Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 317–334. [Google Scholar]
- Iamtrakul, P.; Padon, A.; Chayphong, S. Quantifying the Impact of Urban Growth on Urban Surface Heat Islands in the Bangkok Metropolitan Region, Thailand. Atmosphere 2024, 15, 100. [Google Scholar] [CrossRef]
- Lu, D.; Song, K.; Zang, S.; Jia, M.; Du, J.; Ren, C. The effect of urban expansion on urban surface temperature in Shenyang, China: An analysis with landsat imagery. Environ. Model. Assess. 2015, 20, 197–210. [Google Scholar] [CrossRef]
- Lin, J.; Wei, K.; Guan, Z. Exploring the connection between morphological characteristic of built-up areas and surface heat islands based on MSPA. Urban Clim. 2024, 53, 101764. [Google Scholar] [CrossRef]
- Zeng, P.; Zong, C.; Duan, Z.; Wei, X. Exploring the spatial interplay between built-up environments and surface urban heat island phenomena in the main urban area of Shanghai. Energy Build. 2023, 301, 113739. [Google Scholar] [CrossRef]
- Bretz, S.; Akbari, H.; Rosenfeld, A. Practical issues for using solar-reflective materials to mitigate urban heat islands. Atmos. Environ. 1998, 32, 95–101. [Google Scholar] [CrossRef]
- Rossi, F.; Pisello, A.; Nicolini, A.; Filipponi, M.; Palombo, M. Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model. Appl. Energy 2014, 114, 621–631. [Google Scholar] [CrossRef]
- Yang, J.; Pyrgou, A.; Chong, A.; Santamouris, M.; Kolokotsa, D.; Lee, S. Green and cool roofs’ urban heat island mitigation potential in tropical climate. Sol. Energy 2018, 173, 597–609. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Kaloush, K.; Shacat, J. Cool pavements for urban heat island mitigation: A synthetic review. Renew. Sustain. Energy Rev. 2021, 146, 111171. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L. Development of radiative cooling and its integration with buildings: A comprehensive review. Sol. Energy 2020, 212, 125–151. [Google Scholar] [CrossRef]
- Pisello, A.L.; Saliari, M.; Vasilakopoulou, K.; Hadad, S.; Santamouris, M. Facing the urban overheating: Recent developments. Mitigation potential and sensitivity of the main technologies. Wiley Interdiscip. Rev. Energy Environ. 2018, 7, e294. [Google Scholar] [CrossRef]
- Costanzini, S.; Ferrari, C.; Despini, F.; Muscio, A. Standard test methods for rating of solar reflectance of built-up surfaces and potential use of satellite remote sensors. Energies 2021, 14, 6626. [Google Scholar] [CrossRef]
- Levinson, R.; Akbari, H.; Berdahl, P. Measuring solar reflectance—Part I: Defining a metric that accurately predicts solar heat gain. Sol. Energy 2010, 84, 1717–1744. [Google Scholar] [CrossRef]
- Levinson, R.; Akbari, H.; Berdahl, P. Measuring solar reflectance—Part II: Review of practical methods. Sol. Energy 2010, 84, 1745–1759. [Google Scholar] [CrossRef]
- Danner, M.; Locherer, M.; Hank, T.; Richter, K. Spectral Sampling with the ASD FIELDSPEC 4; EnMAP Consortium: Potsdam, Germany, 2015. [Google Scholar]
- Zhu, Z.; Zhou, Y.; Seto, K.C.; Stokes, E.C.; Deng, C.; Pickett, S.T.; Taubenböck, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 2019, 228, 164–182. [Google Scholar] [CrossRef]
- Costanzini, S.; Despini, F.; Beltrami, L.; Fabbi, S.; Muscio, A.; Teggi, S. Identification of SUHI in Urban Areas by Remote Sensing Data and Mitigation Hypothesis through Solar Reflective Materials. Atmosphere 2021, 13, 70. [Google Scholar] [CrossRef]
- Gueymard, C.; Lara-Fanego, V.; Sengupta, M.; Xie, Y. Surface albedo and reflectance: Review of definitions, angular and spectral effects, and intercomparison of major data sources in support of advanced solar irradiance modeling over the Americas. Sol. Energy 2019, 182, 194–212. [Google Scholar] [CrossRef]
- Choudhury, M.A.M.; Marcheggiani, E.; Despini, F.; Costanzini, S.; Rossi, P.; Galli, A.; Teggi, S. Urban tree species identification and carbon stock mapping for urban green planning and management. Forests 2020, 11, 1226. [Google Scholar] [CrossRef]
- Bigi, A.; Ghermandi, G.; Harrison, R.M. Analysis of the air pollution climate at a background site in the Po valley. J. Environ. Monit. 2012, 14, 552–563. [Google Scholar] [CrossRef]
- Sekertekin, A.; Bonafoni, S. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sens. 2020, 12, 294. [Google Scholar] [CrossRef]
- Teillet, P.M.; Barker, J.L.; Markham, B.L.; Irish, R.R.; Fedosejevs, G.; Storey, J.C. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ. 2001, 78, 39–54. [Google Scholar] [CrossRef]
- Holden, C.E.; Woodcock, C.E. An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations. Remote Sens. Environ. 2016, 185, 16–36. [Google Scholar] [CrossRef]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhe, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Li, L.; Zha, Y.; Wang, R. Relationship of surface urban heat island with air temperature and precipitation in global large cities. Ecol. Indic. 2020, 117, 113195. [Google Scholar] [CrossRef]
- Sharma, R.; Joshi, P.K. Identifying seasonal heat islands in urban settings of Delhi (India) using remotely sensed data–An anomaly based approach. Urban Clim. 2014, 9, 19–34. [Google Scholar] [CrossRef]
- Cook, M.; Schott, J.R.; Mandel, J.; Raqueno, N. Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a Land Surface Temperature (LST) Product from the archive. Remote Sens. 2014, 6, 11244–11266. [Google Scholar] [CrossRef]
- McLeod, A.I. Kendall rank correlation and Mann-Kendall trend test. R Package Kendall 2005, 602, 1–10. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Panwar, M.; Agarwal, A.; Devadas, V. Analyzing land surface temperature trends using non-parametric approach: A case of Delhi, India. Urban Clim. 2018, 24, 19–25. [Google Scholar] [CrossRef]
- Liu, J.F.; Zhang, X.N.; Wang, H.M. Trend analysis of China flood disaster and challenges in the future. Appl. Mech. Mater. 2013, 405, 2144–2150. [Google Scholar] [CrossRef]
- Cooley, T.; Anderson, G.; Felde, G.; Hoke, M.; Ratkowski, A.; Chetwynd, J.; Lewis, P. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 1414–1418. [Google Scholar]
- Kuester, M. Radiometric Use of Worldview-3 Imagery; Digitalglobe: Oakland, CA, USA, 2016. [Google Scholar]
- Thuillier, G.; Hersé, M.; Labs, D.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.C.; Mandel, H. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLPEC spectrometer from the ATLAS and EURECA missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- Brivio, P.; Lechi, G.; Zilioli, E. Principi e Metodi di Telerilevamento; CittaStudi: Milano, Italy, 2006; pp. 1–525. [Google Scholar]
- Parente, C.; Pepe, M. Bathymetry from worldview-3 satellite data using radiometric band ratio. Acta Polytech. 2018, 58, 109–117. [Google Scholar] [CrossRef]
- Munafò, M. Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici; Report SNPA; Ispra: Roma, Italy, 2023.
- Zhang, Y.; Li, D.; Liu, L.; Liang, Z.; Shen, J.; Wei, F.; Li, S. Spatiotemporal characteristics of the surface urban heat island and its driving factors based on local climate zones and population in Beijing, China. Atmosphere 2021, 12, 1271. [Google Scholar] [CrossRef]
- Bonafoni, S.; Keeratikasikorn, C. Land surface temperature and urban density: Multiyear modeling and relationship analysis using MODIS and Landsat data. Remote Sens. 2018, 10, 1471. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Messeri, A.; Orlandini, S.; Raschi, A.; Maracchi, G.; Munafò, M. The impact of built-up surfaces on land surface temperatures in Italian urban areas. Sci. Total Environ. 2016, 551, 317–326. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Q.; Ding, H.; Liang, H. Detection of urban expansion and land surface temperature change using multi-temporal landsat images. Resour. Conserv. Recycl. 2018, 128, 526–534. [Google Scholar] [CrossRef]
- Svidzinska, D.; Korohoda, N. Study of spatiotemporal variations of summer land surface temperature in Kyiv, Ukraine using Landsat time series. In Geoinformatics: Theoretical and Applied Aspects; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2020; Volume 2020, pp. 1–5. [Google Scholar]
- Yavaşlı, D.D. Spatio-temporal trends of urban heat island and surface temperature in Izmir, Turkey. Am. J. Remote Sens. 2017, 5, 24–29. [Google Scholar] [CrossRef]
- Tahooni, A.; Kakroodi, A.A.; Kiavarz, M. Monitoring of land surface albedo and its impact on land surface temperature (LST) using time series of remote sensing data. Ecol. Inform. 2023, 75, 102118. [Google Scholar] [CrossRef]
- Bonafoni, S.; Baldinelli, G.; Rotili, A.; Verducci, P. Albedo and surface temperature relation in urban areas: Analysis with different sensors. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017; pp. 1–4. [Google Scholar]
- Bossard, M.; Feranec, J.; Otahel, J. CORINE Land Cover Technical Guide—Addendum; Technical Report; No. 105; European Enviroment Agency: Copenhagen, Denmark, 2000.
- Imran, H.M.; Kala, J.; Ng, A.W.M.; Muthukumaran, S. Effectiveness of green and cool roofs in mitigating urban heat island effects during a heatwave event in the city of Melbourne in southeast Australia. J. Clean. Prod. 2018, 197, 393–405. [Google Scholar] [CrossRef]
- Lomba-Fernández, C.; Hernantes, J.; Labaka, L. Guide for climate-resilient cities: An urban critical infrastructures approach. Sustainability 2019, 11, 4727. [Google Scholar] [CrossRef]
- Wald, L. Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions; Presses des MINES: Paris, France, 2002. [Google Scholar]
- Despini, F.; Ferrari, C.; Santunione, G.; Tommasone, S.; Muscio, A.; Teggi, S. Urban surfaces analysis with remote sensing data for the evaluation of UHI mitigation scenarios. Urban Clim. 2021, 35, 1–12. [Google Scholar] [CrossRef]
- Despini, F.; Ferrari, C.; Bigi, A.; Libbra, A.; Teggi, S.; Muscio, A.; Ghermandi, G. Correlation between remote sensing data and ground based measurements for solar reflectance retrieving. Energy Build. 2016, 114, 227–233. [Google Scholar] [CrossRef]
- Baldinelli, G.; Bonafoni, S.; Anniballe, R.; Presciutti, A.; Gioli, B.; Magliulo, V. Spaceborne detection of roof and impervious surface albedo: Potentialities and comparison with airborne thermography measurements. Sol. Energy 2015, 113, 281–294. [Google Scholar] [CrossRef]
- Lucht, W.; Hyman, A.H.; Strahler, A.H.; Barnsley, M.J.; Hobson, P.; Muller, J.P. A comparison of satellite-derived spectral albedos to ground-based broadband albedo measurements modeled to satellite spatial scale for a semidesert landscape. Remote Sens. Environ. 2000, 74, 85–98. [Google Scholar] [CrossRef]
- Liang, S.; Fang, H.; Chen, M.; Shuey, C.J.; Walthall, C.; Daughtry, C.; Morisette, J.; Schaaf, C.; Strahler, A. Validating MODIS land surface reflectance and albedo products: Methods and preliminary results. Remote Sens. Environ. 2002, 83, 149–162. [Google Scholar] [CrossRef]
- Román, M.O.; Gatebe, C.K.; Shuai, Y.; Wang, Z.; Gao, F.; Masek, J.G.; He, T.; Liang, S.; Schaaf, C.B. Use of in situ and airborne multiangle data to assess MODIS-and Landsat-based estimates of directional reflectance and albedo. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1393–1404. [Google Scholar] [CrossRef]
Spectral Region | Bands | Bandwidth (nm) | Spatial Resolution (m) |
---|---|---|---|
Visible—Near Infrared | Coastal—blue | 400–450 | 1.20 |
Blue | 450–510 | ||
Green | 510–580 | ||
Yellow | 590–630 | ||
Red | 630–690 | ||
Red-edge | 710–750 | ||
NIR-1 | 770–900 | ||
NIR-2 | 860–1040 | ||
Short wave Infrared | SWIR-1 | 1120–1230 | 7.50 |
SWIR-2 | 1550–1600 | ||
SWIR-3 | 1640–1680 | ||
SWIR-4 | 1710–1750 | ||
SWIR-5 | 2150–2190 | ||
SWIR-6 | 2190–2230 | ||
SWIR-7 | 2240–2290 | ||
SWIR-8 | 2240–2370 |
Spectral Range | 350–2500 nm |
Spectral Resolution | 3 nm @ 700 nm |
10 nm @ 1400/2100 nm | |
Sampling Interval * | 1.4 nm @ 350–1050 nm |
2 nm @ 1000–2500 nm | |
Scanning Time | 100 milliseconds |
Stray light specification | VNIR 0.02%—SWIR 1 & 2 0.01% |
Wavelength reproducibility | 0.1 nm |
Wavelength accuracy | 0.5 nm |
Maximum radiance ** | VNIR 2 × Solar—SWIR 10 × Solar |
Bands | 2151 |
Bands | Thuillier Coefficients (-) * |
---|---|
Coastal (B1) | 0.13 |
Blue (B2) | 0.15 |
Green (B3) | 0.13 |
Yellow (B4) | 0.13 |
Red (B5) | 0.11 |
Red-edge (B6) | 0.10 |
NIR1 (B7) | 0.078 |
NIR2 (B8) | 0.063 |
SWIR1 (B9) | 0.035 |
SWIR2 (B10) | 0.019 |
SWIR3 (B11) | 0.017 |
SWIR4 (B12) | 0.015 |
SWIR5 (B13) | 0.0067 |
SWIR6 (B14) | 0.0063 |
SWIR7 (B15) | 0.0057 |
SWIR8 (B16) | 0.0050 |
ROI * | VNIR | SWIR | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | B12 | B13 | B14 | B15 | B16 | |
1 | 0.003 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.006 | 0.005 | 0.006 | 0.005 | 0.005 | 0.004 |
2 | 0.001 | 0.001 | 0.002 | 0.003 | 0.005 | 0.005 | 0.006 | 0.006 | 0.011 | 0.018 | 0.019 | 0.017 | 0.022 | 0.020 | 0.021 | 0.019 |
3 | 0.001 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.005 | 0.005 | 0.010 | 0.010 | 0.010 | 0.010 | 0.009 | 0.009 | 0.010 | 0.008 |
4 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.003 | 0.003 | 0.002 | 0.002 | 0.005 | 0.005 | 0.005 | 0.004 |
5 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
6 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Max | 0.003 | 0.004 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.006 | 0.011 | 0.018 | 0.019 | 0.017 | 0.022 | 0.020 | 0.021 | 0.019 |
Mean | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.003 | 0.003 | 0.003 | 0.005 | 0.007 | 0.007 | 0.006 | 0.007 | 0.007 | 0.007 | 0.006 |
ROI | Mean RMSE (-) * |
---|---|
Parking with cobblestones | 0.01 |
Polyolefin roof | 0.10 |
Aged tiles roof | 0.13 |
Asphalt parking | 0.06 |
New tiles roof | 0.14 |
Bituminous membrane (ASD Fieldspec 4) | 0.02 |
Bituminous membrane (Spectrophotometer) | 0.03 |
Urban Surfaces | Solar Reflectance | ||
---|---|---|---|
WV3 Satellite | Fieldspec (AM1GH) | Fieldspec (E891BN) | |
Parking with cobblestones | 0.14 | 0.14 | 0.15 |
Polyolefin roof | 0.65 | 0.57 | 0.58 |
Aged tiles roof | 0.21 | 0.28 | 0.32 |
New tiles roof | 0.21 | 0.30 | 0.33 |
Bituminous membrane | 0.12 | 0.11 | 0.11 |
Asphalt parking | 0.16 | 0.20 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parmeggiani, D.; Despini, F.; Costanzini, S.; Silvestri, M.; Rabuffi, F.; Teggi, S.; Ghermandi, G. Assessing Satellite Data’s Role in Substituting Ground Measurements for Urban Surfaces Characterization: A Step towards UHI Mitigation. Atmosphere 2024, 15, 551. https://doi.org/10.3390/atmos15050551
Parmeggiani D, Despini F, Costanzini S, Silvestri M, Rabuffi F, Teggi S, Ghermandi G. Assessing Satellite Data’s Role in Substituting Ground Measurements for Urban Surfaces Characterization: A Step towards UHI Mitigation. Atmosphere. 2024; 15(5):551. https://doi.org/10.3390/atmos15050551
Chicago/Turabian StyleParmeggiani, Davide, Francesca Despini, Sofia Costanzini, Malvina Silvestri, Federico Rabuffi, Sergio Teggi, and Grazia Ghermandi. 2024. "Assessing Satellite Data’s Role in Substituting Ground Measurements for Urban Surfaces Characterization: A Step towards UHI Mitigation" Atmosphere 15, no. 5: 551. https://doi.org/10.3390/atmos15050551
APA StyleParmeggiani, D., Despini, F., Costanzini, S., Silvestri, M., Rabuffi, F., Teggi, S., & Ghermandi, G. (2024). Assessing Satellite Data’s Role in Substituting Ground Measurements for Urban Surfaces Characterization: A Step towards UHI Mitigation. Atmosphere, 15(5), 551. https://doi.org/10.3390/atmos15050551