Remote Sensing Monitoring and Multidimensional Impact Factor Analysis of Urban Heat Island Effect in Zhengzhou City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Data
2.2.2. Auxiliary Data
2.3. Land Surface Temperature Retrieval
2.4. Heat Island Intensity Classification
2.5. Center of Gravity Shift Model
- (1)
- Gravity shift distance model
- (2)
- Gravity shift angle model
2.6. Exploration of Factors Influencing Urban Heat Island Intensity
3. Results
3.1. Temporal and Spatial Evolution of Urban Thermal Environment
3.2. Urban Heat Island Effect Spatiotemporal Evolution
3.3. Analysis of Factors Affecting Urban Heat Island Intensity
4. Discussion
4.1. Impact of Urbanization on Urban Heat Islands
4.2. Analysis of Contributing Factors to UHI Intensity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Manley, G. On the frequency of snowfall in metropolitan England. Q. J. R. Meteorol. Soc. 1958, 84, 70–72. [Google Scholar] [CrossRef]
- Chang, Y.; Xiao, J.; Li, X.; Middel, A.; Zhang, Y.; Gu, Z.; Wu, Y.; He, S. Exploring diurnal thermal variations in urban local climate zones with ECOSTRESS land surface temperature data. Remote Sens. Environ. 2021, 263, 112544. [Google Scholar] [CrossRef]
- Dong, J.; Tan, Z.; Xiao, Y.; Tu, J. Seasonal changing effect on airflow and pollutant dispersion characteristics in urban street canyons. Atmosphere 2017, 8, 43. [Google Scholar] [CrossRef]
- Zeren Cetin, I.; Varol, T.; Ozel, H.B. A geographic information systems and remote sensing-based approach to assess urban micro-climate change and its impact on human health in Bartin, Turkey. Environ. Monit. Assess. 2023, 195, 540. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. *Reducing Urban Heat Islands: Chapter 1*. U.S. Environmental Protection Agency. 2017. Available online: https://www.epa.gov/sites/default/files/2017-05/documents/reducing_urban_heat_islands_ch_1.pdf (accessed on 19 August 2024).
- Jiang, S.; Peng, J.; Dong, J.; Cheng, X.; Dan, Y. Conceptual connotation and quantitative characterisation of urban heat island effect on the surface. J. Geogr. 2022, 77, 2249–2265. [Google Scholar]
- Wu, Z.F.; Ren, Y. A bibliometric review of past trends and future prospects in urban heat island research from 1990 to 2017. Environ. Rev. 2019, 27, 241–251. [Google Scholar] [CrossRef]
- Attiah, G.; Kheyrollah Pour, H.; Scott, K.A. Lake surface temperature retrieved from Landsat satellite series (1984 to 2021) for the North Slave Region. Earth Syst. Sci. Data 2023, 15, 1329–1355. [Google Scholar] [CrossRef]
- Kim, S.; Brown, R. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef]
- Yang, C.; He, W.; Zhuang, M.; Jia, Z.; Xu, Z.; Yang, W. Evaluation of urban heat island in Hefei based on meteorological station and MODIS data. China Environ. Sci. 2023, 43, 243–250. [Google Scholar]
- Hu, Y.; Hou, M.; Jia, G.; Zhao, C.; Zhen, X.; Xu, Y. Comparison of surface and canopy urban heat islands within megacities of eastern China. ISPRS J. Photogramm. Remote Sens. 2019, 156, 160–168. [Google Scholar] [CrossRef]
- Shen, Z.; Zeng, J. Evolutionary analysis of regional heat island spatial and temporal patterns in the Min Delta urban agglomeration from 1996 to 2017. J. Saf. Environ. 2020, 20, 1567–1578. [Google Scholar]
- Estoque, R.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sensing 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Ding, H.; Shi, W. Land-use/land-cover change and its influence on surface temperature: A case study in Beijing city. Int. J. Remote Sens. 2013, 34, 5503–5517. [Google Scholar] [CrossRef]
- Mathew, A.; Khandelwal, S.; Kaul, N. Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature: Study of Chandigarh city, India. Sustain. Cities Soc. 2016, 26, 264–277. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, Z.; Zhang, L.; Sun, Z.; Hu, D.; Yang, T. Relationship between urban thermal environment and density response of impervious surface aggregation at multiple spatial scales. J. Remote Sens. 2022, 26, 1789–1801. [Google Scholar]
- Morabito, M.; Crisci, A.; Messeri, A.; Orlandini, S.; Raschi, A.; Maracchi, G.; Munafò, M. The impact of built-up surfaces on land surface temperatures in Italian urban areas. Sci. Total Environ. 2016, 551, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, W.; Zhu, Y.; Cai, A. Thermal effects of urban expansion direction and type in Nanjing based on remote sensing. Remote Sens. Nat. Resour. 2023, 35, 130–138. [Google Scholar]
- Zhang, C.; Liu, H.; Kong, J.; Liu, W. Research on the influence of different land types on heat island effect in the main urban area of Handan City. J. Northwest For. Coll. 2024, 39, 189–195. [Google Scholar]
- Ulah, N.; Sidique, M.; Ding, M.; Grigoryan, S.; Khan, I.A.; Kang, Z.; Tsou, S.; Zhang, T.; Hu, Y.; Zhang, Y. The impact of urbanization on urban heat island: Predictive approach using google earth engine and Ca-Markov modelling (2005–2050) of Tianjin City, China. Int. J. Environ. Res. Public Health 2023, 20, 2642–2657. [Google Scholar] [CrossRef]
- Assaf, G.; Hu, X.; Assaad, R.H. Predicting Urban Heat Island severity on the census-tract level using Bayesian networks. Sustain. Cities Soc. 2023, 97, 104756. [Google Scholar]
- Cetin, M.; Ozenen Kavlak, M.; Senyel Kurkcuoglu, M.A.; Bilge Ozturk, G.; Cabuk, S.N.; Cabuk, A. Determination of land surface temperature and urban heat island effects with remote sensing capabilities: The case of Kayseri, Türkiye. Nat. Hazards 2024, 120, 5509–5536. [Google Scholar] [CrossRef]
- Chubarova, N.; Androsova, E.; Kirsanov, A.; Varentsov, M.; Rivin, G. Urban aerosol, its radiative and tempera-ture response in comparison with urban canopy effects in megacity based on COSMO-ART modeling. Urban Clim. 2024, 53, 101762. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Muvengwi, J. Night-time lights and their influence on summer night land surface temperature in two urban cities of Zimbabwe: A geospatial perspective. Urban Clim. 2019, 29, 100468. [Google Scholar] [CrossRef]
- Song, Y.; Min, W.; Peng, X. The impact of urban underlying surface change on surface thermal field in Chengdu. J. Southwest Univ. Nat. Sci. Ed. 2022, 44, 197–206. [Google Scholar]
- Zhang, Y.; Wang, Y.C.; Ding, N. Spatial effects of landscape patterns of urban patches with different vegetation fractions on urban thermal environment. Remote Sens. 2022, 14, 5684–5703. [Google Scholar] [CrossRef]
- Liang, J.; Bai, Y.; Gao, Z.; Yang, X.; Li, L.; Zhang, C.; Qiao, F. A study on the dynamic relationship between landscape configuration and heat island intensity of urban growth patterns: A case of five cities in the Beijing-Tianjin-Hebei city cluster. Sustainability 2022, 14, 14099–14119. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30 m landsat derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Kong, Z.; Yang, H.; Zheng, F.; Li, Y.; Qi, J.; Zhu, Q.; Yang, Z. Progress in atmospheric correction of hyperspectral remote sensing images. Remote Sens. Nat. Resour. 2022, 34, 1–10. [Google Scholar]
- Xu, L.; Xiong, W.; Yi, W.; Qiu, Z.; Liu, X.; Cui, W. A multispectral satellite image correction method based on on-board synoptic atmospheric parameters. Spectrosc. Spectr. Anal. 2024, 44, 843–852. [Google Scholar]
- Xiong, Y.; Zhang, F. Effect of human settlements on urban thermal environment and factor analysis based on multi-source data: A case study of Changsha city. J. Geogr. Sci. 2021, 31, 819–838. [Google Scholar] [CrossRef]
- Li, H. Research on Thermal Environment of Medium-Sized Cities Supported by Multi-Source Remote Sensing Data. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2012. [Google Scholar]
- Lv, W.; Mo, N.; Ma, M. Spatio-temporal pattern of carbon emissions and center of gravity migration analysis of the city cluster along the Yellow River in Ningxia from 2000 to 2020. Water Saf. 2024, 9, 64–66. [Google Scholar]
- Wang, J.; Xu, C. Geoprobes: Principles and prospects. J. Geogr. 2017, 72, 116–134. [Google Scholar]
- Shi, K.; Yan, F.; Wang, Z.; Tian, P.; Liang, Y.; Chen, Y. Analysis of multiple driving forces of vegetation cover evolution in Beijing-Tianjin-Hebei based on optimal parameter geoprobes. Environ. Sci. 2024, 1–32. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhou, Z. Analysis of urban heat island drivers based on geodetectors: A case study of Wuhan. Yangtze River Basin Resour. Environ. 2020, 29, 1768–1779. [Google Scholar]
- Qian, S. Research on microaggregate data perturbation encryption based on Jenks algorithm with controllable granularity. Wirel. Interconnect. Technol. 2021, 18, 114–118. [Google Scholar]
Data | |||
---|---|---|---|
16 June 2000 | 0.63 | 2.84 | 4.49 |
30 August 2004 | 0.69 | 2.43 | 3.86 |
12 August 2009 | 0.76 | 2.10 | 3.42 |
4 June 2013 | 0.80 | 1.76 | 2.95 |
26 August 2020 | 0.68 | 2.80 | 4.43 |
Classification Level | Criteria |
---|---|
strong heat island areas (SHIAs) | |
moderately strong heat island areas (WSHIAs) | |
weak heat island areas (WHIAs) | |
normal areas (NAs) | |
weak cool island areas (WCIAs) | |
moderately strong cool island areas (MSCIAs) | |
strong cool island areas (SCIAs) |
Factor Categories | Factors Influencing | Abbreviation |
---|---|---|
surface characteristics | Normalized Difference Vegetation Index | NDVI |
Soil-Adjusted Vegetation Index | SAVI | |
Normalized Built-up Index | NDBI | |
Modified Normalized Difference Water Index | MNDWI | |
Land Use Land Cover | LULC | |
Elevation | ELEVATION | |
meteorology | Aerosol Optical Depth | AOD |
social economy | Nighttime light | NL |
Population density | PD | |
Road density | RD |
Factors Influencing | NDBI | NDVI | LULC | MNDWI | NL | SAVI | RD | PD | ELE | AOD |
---|---|---|---|---|---|---|---|---|---|---|
Levels of Influencing Factors (q-value) | 0.427 | 0.413 | 0.383 | 0.312 | 0.301 | 0.295 | 0.211 | 0.163 | 0.080 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, G.; Yu, H.; Gao, G.; Lou, Z. Remote Sensing Monitoring and Multidimensional Impact Factor Analysis of Urban Heat Island Effect in Zhengzhou City. Atmosphere 2024, 15, 1097. https://doi.org/10.3390/atmos15091097
Zhang X, Li G, Yu H, Gao G, Lou Z. Remote Sensing Monitoring and Multidimensional Impact Factor Analysis of Urban Heat Island Effect in Zhengzhou City. Atmosphere. 2024; 15(9):1097. https://doi.org/10.3390/atmos15091097
Chicago/Turabian StyleZhang, Xiangjun, Guoqing Li, Haikun Yu, Guangxu Gao, and Zhengfang Lou. 2024. "Remote Sensing Monitoring and Multidimensional Impact Factor Analysis of Urban Heat Island Effect in Zhengzhou City" Atmosphere 15, no. 9: 1097. https://doi.org/10.3390/atmos15091097
APA StyleZhang, X., Li, G., Yu, H., Gao, G., & Lou, Z. (2024). Remote Sensing Monitoring and Multidimensional Impact Factor Analysis of Urban Heat Island Effect in Zhengzhou City. Atmosphere, 15(9), 1097. https://doi.org/10.3390/atmos15091097