Regional Spatial Mean of Ionospheric Irregularities Based on K-Means Clustering of ROTI Maps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and ROTI Calculation
2.2. ROTI Map Estimation
2.3. Optimization Sample Technique
3. Results and Discussion
3.1. Regional ROTI Maps under Different Geomagnetic Conditions
3.2. Optimum Sampling Applied to Test Cases
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groves, K.M.; Basu, S.; Weber, E.J.; Smitham, M.; Kuenzler, H.; Valladares, C.E.; Sheehan, R.; MacKenzie, E.; Secan, J.A.; Ning, P.; et al. Equatorial scintillation and systems support. Radio Sci. 1997, 32, 2047–2064. [Google Scholar] [CrossRef]
- Kelley, M.C.; Makela, J.J.; de la Beaujardiere, O.; Retterer, J. Convective ionospheric storms: A review. Rev. Geophys. 2011, 49, RG2003. [Google Scholar] [CrossRef]
- Paznukhov, V.V.; Carrano, C.S.; Doherty, P.H.; Groves, K.M.; Caton, R.G.; Valladares, C.E.; Seemala, G.K.; Bridgwood, C.T.; Adeniyi, J.; Amaeshi, L.L.N.; et al. Equatorial plasma bubbles and L-band scintillation in Africa during solar minimum. Ann. Geophys. 2012, 30, 675–682. [Google Scholar] [CrossRef]
- Balan, N.; Liu, L.; Le, H. A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet. Phys. 2018, 2, 1–19. [Google Scholar] [CrossRef]
- Pi, X.; Mannucci, A.J.; Lindqdwister, U.J.; Ho, C.M. Monitoring of Global Ionospheric Irregularities using the worldwide GPS. Geophys. Res. Lett. 1997, 24, 2283–2286. [Google Scholar] [CrossRef]
- Basu, S.; Groves, K.M.; Quinn, J.M.; Doherty, P. A Comparison of TEC Fluctuation and Scintillation at Ascension Island. J. Atmos. Sol. Terr. Phys. 1999, 61, 1219–1226. [Google Scholar] [CrossRef]
- Chandra, K.R.; Strinivas, V.S.; Sarma, A.D. Investigation of Ionospheric Gradients for GAGAN application. Earth Planets Space 2009, 61, 633–635. [Google Scholar] [CrossRef]
- Abe, O.E.; Otero Villamide, X.; Paparini, C.; Ngaya, R.H.; Radicella, S.M.; Nava, B. Signature of ionospheric irregularities under different geophysical conditions on SBAS performance in the western African low-latitude region. Ann. Geophys. 2017, 35, 1–9. [Google Scholar] [CrossRef]
- Abe, O.E.; Paparini, C.; Ngaya, H.R.; Otero Villamide, X.; Radicella, S.M.; Nava, B. The storm-time assessment of GNSS-SBAS performance within low latitude African region using a testbed-like platform. Astrophys. Space Sci. 2017, 362, 170. [Google Scholar] [CrossRef]
- Cressie, N. Statistics for Spatial Data, revised ed.; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Sayin, I.; Arikan, F.; Arikan, O. Regional TEC mapping with random field priors and kriging. Radio Sci. 2008, 43, RS5012. [Google Scholar] [CrossRef]
- Orús, R.; Hernández-Pajares, M.; Juan, J.M.; Sanz, J. Improvement of Global Ionospheric VTEC Maps by Using Kriging Interpolation Technique. J. Atmos. Sol. Terr. Phys. 2005, 67, 1598–1609. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, H.; Xu, P.; Geng, J.; Wang, C.; Liu, J. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction. Sensors 2017, 17, 468. [Google Scholar] [CrossRef] [PubMed]
- Maglambayan, V.L.L.; Macalalad, E.P. Two-Dimensional Mapping of Ionospheric Total Electron Content over the Philippines Using Kriging Interpolation. Atmosphere 2022, 13, 1626. [Google Scholar] [CrossRef]
- Nayak, K.; López-Urías, C.; Romero-Andrade, R.; Sharma, G.; Guzmán-Acevedo, G.M.; Trejo-Soto, M.E. Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake. Geosciences 2023, 13, 319. [Google Scholar] [CrossRef]
- Schaer, S. Mapping and Predicting the Earth’s Ionosphere using the Global Positioning System. Ph.D. Thesis, Astronomisches Institut, Universität Bern, Bern, Switzerland, 1999. [Google Scholar]
- Blanch, J. An Ionospheric Estimation Algorithm for WAAS Based on Kriging. In Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2002), Portland, OR, USA, 24–27 September 2002. [Google Scholar]
- Blanch, J.; Walter, T.; Enge, P. Adapting Kriging to the WAAS MOPS Ionospheric Grid. In Proceedings of the 2003 National Technical Meeting of the Institute of Navigation, Anaheim, CA, USA, 22–24 January 2003; pp. 848–853. [Google Scholar]
- Rodríguez-Bouza, M.; Paparini, C.; Otero, X.; Herraiz, M.; Radicella, S.M.; Abe, O.E.; Rodríguez-Caderot, G. Southern European Ionospheric TEC Maps based on Kriging technique to monitor ionosphere behavior. Adv. Space Res. 2017. [Google Scholar] [CrossRef]
- Babu Sree Harsha, P.; Venkata Ratnam, D.; Lavanya Nagasri, M.; Sridhar, M.; Padma Raju, K. Kriging-based ionospheric TEC, ROTI and amplitude scintillation index (S 4) maps for India. IET Radar Sonar Navig. 2020, 14, 1827–1836. [Google Scholar] [CrossRef]
- Beeck, S.S.; Jensen, A.B.O. ROTI maps of Greenland using kriging. J. Geod. Sci. 2021, 11, 83–94. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Los Angeles, CA, USA, 27 December 1965–7 January 1966; University of California Press: Los Angeles, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Hartigan, J.A. Clustering Algorithms; Wiley: New York, NY, USA, 1975; p. 351. [Google Scholar]
- Esteban, P.; Jones, P.D.; Martín-Vide, J.; Mases, M. Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees. Int. J. Climatol. 2005, 25, 319–329. [Google Scholar] [CrossRef]
- Zeng, S.; Vaughan, M.; Liu, Z.; Trepte, C.; Kar, J.; Omar, A.; Winker, D.; Lucker, P.; Hu, Y.; Getzewich, B.; et al. Application of high-dimensional fuzzy k-means cluster analysis to CALIOP/CALIPSO version 4.1 cloud–aerosol discrimination. Atmos. Meas. Tech. 2019, 12, 2261–2285. [Google Scholar] [CrossRef]
- Smith, E.T.; Lee, C.C.; Barnes, B.B.; Adams, R.E.; Pirhalla, D.E.; Ransibrahmanakul, V.; Hu, C.; Sheridan, S.C. A Synoptic Climatological Analysis of the Atmospheric Drivers of Water Clarity Variability in the Great Lakes. J. Appl. Meteorol. Clim 2020, 59, 915–935. [Google Scholar] [CrossRef]
- Kannan, S.; Ghosh, S. Prediction of daily rainfall state in a river basin using statistical downscaling from GCM output. Stoch. Env. Res. Risk A. 2011, 25, 457–474. [Google Scholar] [CrossRef]
- Le Roux, R.; Katurji, M.; Zawar-Reza, P.; Quénol, H.; Sturman, A. Comparison of statistical and dynamical downscaling results from the WRF model. Environ. Model. Softw. 2018, 100, 67–73. [Google Scholar] [CrossRef]
- Pomee, M.S.; Hertig, E. Precipitation projections over the Indus River Basin of Pakistan for the 21st century using a statistical downscaling framework. Int. J. Climatol. 2022, 42, 289–314. [Google Scholar] [CrossRef]
- Di, H.; Shafiq, M.A.; Al Regib, G. Seismic-fault detection based on multiattribute support vector machine analysis. In SEG Technical Program Expanded Abstracts 2017; Society of Exploration Geophysicists: Houston, TX, USA, 2017; pp. 2039–2044. [Google Scholar]
- Wei, S.; Yonglin, O.; Qingcai, Z.; Jiaqiang, H. Unsupervised machine learning: K-means clustering velocity semblance Auto-Picking. In Proceedings of the 80th EAGE Conference and Exhibition 2018, Copenhagen, Denmark, 11–14 June 2018; Available online: https://www.earthdoc.org/content/papers/10.3997/2214-4609.201800919 (accessed on 25 May 2024).
- Pongracic, B.; Wu, F.; Fathollahi, L.; Brčić, D. Midlatitude Klobuchar correction model based on the k-means clustering of ionospheric daily variations. GPS Solut. 2019, 23, 80. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Zhang, C. Support vector machines based on K-means clustering for real-time business intelligence systems. Int. J. Bus. Intell. Data Min. 2005, 1, 54–64. [Google Scholar] [CrossRef]
- Pomponi, E.; Vinogradov, A. A real-time approach to acoustic emission clustering. Mech. Syst. Signal Process. 2013, 40–42, 791–804. [Google Scholar] [CrossRef]
- Olukanmi, P.O.; Nelwamondo, F.; Marwala, T. k-Means-Lite: Real Time Clustering for Large Datasets. In Proceedings of the 5th International Conference on Soft Computing & Machine Intelligence (ISCMI), Nairobi, Kenya, 21–22 November 2018; pp. 54–59. [Google Scholar] [CrossRef]
- Azzouzi, I.; Migoya-Orué, Y.; Amory Mazaudier, C.; Fleury, R.; Radicella, S.M.; Touzani, A. Signatures of solar event at middle and low latitudes in the Europe-African sector, during geomagnetic storms, October 2013. Adv. Space Res. 2015, 56, 9. [Google Scholar] [CrossRef]
- Migoya-Orué, Y.; Alazo-Cuartas, K.; Kashcheyev, A.; Amory-Mazaudier, C.; Radicella, S.; Nava, B.; Fleury, R.; Ezquer, R. B2 Thickness Parameter Response to Equinoctial Geomagnetic Storms. Sensors 2021, 21, 7369. [Google Scholar] [CrossRef]
- Walter, T.; Hansen, A.; Blanch, J.; Enge, P.; Mannucci, T.; Pi, X.; Sparks, L.; Iijima, B.; El-Arini, B.; Lejeune, R.; et al. Robust Detection of Ionospheric Irregularities, NAVIGATION. J. Inst. Navig. 2001, 48, 89–100. [Google Scholar] [CrossRef]
- Sparks, L.; Blanch, J.; Pandya, N. Estimating ionospheric delay using Kriging: 1. Methodology. Radio Sci. 2011, 46, RS0D21. [Google Scholar] [CrossRef]
- Sarma, A.D.; Venkata Ratnam, D.; Krishna Reddy, D. Modeling low latitude ionosphere using modified planar fit method for GAGAN. IET Radar Sonar Navig. 2009, 3, 609–619. [Google Scholar] [CrossRef]
- Hansen, A.; Peterson, E.; Walter, T.; Enge, P. Correlation Structure of Ionosphere Estimation and Correction for WAAS. In Proceedings of the National Technical Meeting, Anaheim, CA, USA, 26–28 January 2000; pp. 454–463. [Google Scholar]
- Hansen, A.; Blanch, J.; Walter, T.; Enge, P. Ionospheric Correlation Analysis for WAAS: Quiet and Stormy. In Proceedings of the 13th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2000), Salt Lake City, UT, USA, 19–22 September 2000; pp. 634–642. [Google Scholar]
- Abe, O.E.; Paparini, C.; Ngaya, R.H.; Radicella, S.M.; Nava, B.; Kashcheyev, A. Assessment study of ionosphere correction model using single- and multi-shell algorithms approach over sub-Saharan African region. Adv. Space Res. 2019, 63, 10. [Google Scholar] [CrossRef]
- Sparks, L.; Blanch, J.; Pandya, N. Estimating ionospheric delay using Kriging: 2. Impact on satellite-based augmentation system availability. Radio Sci. 2011, 46, RS0D22. [Google Scholar] [CrossRef]
- Pandya, N.; Gran, M.; Paredes, E. WAAS Performance Improvement with a new Undersampled ionospheric gradient threat model metric. In Proceedings of the 2007 National Technical Meeting of the Institute of Navigation, San Diego, CA, USA, 22–24 January 2007. [Google Scholar]
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Walvoort, D.J.J.; Brus, D.J.; de Gruijter, J.J. spcosa: Spatial Coverage Sampling and Random Sampling from Compact Geographical Strata. 2009. R Package Version 0.2-1. Available online: http://cran.r-project.org/package=spcosa (accessed on 20 June 2024).
#Station | Station Code | Country | Geog. Lat. (°) | Geog. Lon. (°) | Network |
---|---|---|---|---|---|
1 | BJAB | Benin | 7.11 | 2.00 | GPS-AFREF |
2 | BJCO | Benin | 6.23 | 2.23 | GPS-AFREF |
3 | BJKA | Benin | 11.07 | 2.55 | GPS-AFREF |
4 | BJNA | Benin | 10.15 | 1.22 | GPS-AFREF |
5 | BJNI | Benin | 9.57 | 3.12 | GPS-AFREF |
6 | BJPA | Benin | 9.21 | 2.37 | GPS-AFREF |
7 | BJSA | Benin | 7.56 | 1.60 | GPS-AFREF |
8 | OUAG | Burkina Faso | 12.35 | −1.95 | GPS-IGS |
9 | YKRO | Cote D’Ivoire | 6.87 | −5.24 | GPS-IGS |
10 | NKLG | Gabon | 0.35 | 9.67 | GPS-IGS |
11 | ACRA | Ghana | 5.6 | −0.20 | GPS-IGS |
12 | CGGN | Nigeria | 10.12 | 9.12 | GPS-IGS |
13 | OSGF | Nigeria | 6.92 | 11.18 | NIG-NET GPS |
14 | ULAG | Nigeria | 6.52 | 3.39 | NIG-NET GPS |
15 | FUTA | Nigeria | 7.2 | 5.3 | NIG-NET GPS |
16 | RUST | Nigeria | 4.8 | 6.98 | NIG-NET GPS |
17 | UNEC | Nigeria | 6.42 | 7.51 | NIG-NET GPS |
18 | FUTY | Nigeria | 9.35 | 12.5 | NIG-NET GPS |
19 | BKFP | Nigeria | 12.47 | 4.23 | NIG-NET GPS |
20 | ABUZ | Nigeria | 11.15 | 7.65 | NIG-NET GPS |
21 | FG07 | Sao Tome | 0.35 | 6.74 | SONEL GPS |
22 | DAKR | Senegal | 14.75 | −17.49 | GPS-IGS |
#Cluster | Lon. | Lat. | Roti |
---|---|---|---|
1 | 1.0406142 | 5.4264093 | 0.98796 |
2 | 9.0656952 | 5.4496616 | 0.89953 |
3 | 0.7574102 | 0.7424731 | 0.24533 |
4 | 13.9909615 | 12.8552702 | 0.32832 |
5 | 1.84456 | 15.9886426 | 0.28087 |
6 | 9.4122007 | 17.0629056 | 0.33742 |
7 | 12.86602 | 6.1328875 | 0.94803 |
8 | 7.8254299 | 1.4123836 | 1.1094 |
9 | −2.4998058 | 3.88543 | 0.4506 |
10 | −2.5378407 | 8.3695419 | 0.2559 |
11 | −6.6016795 | 9.9428645 | 0.77241 |
12 | 9.5246104 | 13.2109367 | 0.3707 |
13 | −4.6222565 | 12.7082078 | 0.35477 |
14 | 10.3590898 | 9.4368107 | 0.29737 |
15 | 6.5936256 | 10.0758751 | 0.62692 |
16 | 6.0172696 | 15.4801344 | 0.54801 |
17 | 5.4927833 | −2.122805 | 0.17332 |
18 | −6.4449116 | 6.3504329 | 0.97968 |
19 | 11.6189996 | 1.7535332 | 1.3688 |
20 | −0.5090778 | 11.9470749 | 0.37997 |
21 | 4.0738014 | 2.2208489 | 0.67802 |
22 | 5.3790547 | 6.0552358 | 0.53311 |
23 | 2.1775499 | 8.9743649 | 0.9368 |
24 | 10.3294307 | −2.5482636 | 0.55764 |
25 | 12.4568628 | 16.0298895 | 0.47352 |
26 | 3.6786224 | 12.5873912 | 0.90425 |
27 | −5.8302737 | 2.1316645 | 1.0141 |
28 | −4.5715688 | −0.8569324 | 0.3142 |
29 | 14.2820471 | 9.4893215 | 0.30181 |
30 | −1.9906776 | 15.3468051 | 0.2656 |
#Cluster | Lon. | Lat. | Roti |
---|---|---|---|
1 | 5.33433035 | 17.935405 | 0.25196 |
2 | 11.44710797 | 9.1741088 | 0.26178 |
3 | 10.34243442 | 5.8323767 | 0.31078 |
4 | −1.85233973 | 13.635944 | 0.4807 |
5 | −2.71429565 | 0.4553038 | 0.25837 |
6 | −0.11120521 | 10.2096185 | 0.38294 |
7 | 1.4351383 | 13.4653392 | 0.21679 |
8 | 6.47425093 | −2.8970902 | 0.15069 |
9 | 1.64522135 | 17.1000017 | 0.34119 |
10 | 2.02938754 | 0.8038183 | 0.50119 |
11 | 12.1004933 | 12.6976959 | 0.16265 |
12 | 10.18263684 | 1.8554506 | 0.43152 |
13 | −0.06530547 | 3.510308 | 0.84188 |
14 | −3.46841862 | 10.1579548 | 0.24123 |
15 | 7.92117177 | 10.954396 | 0.074431 |
16 | 11.95834614 | 16.4556678 | 0.23902 |
17 | 3.62740587 | 4.1560713 | 0.30639 |
18 | 6.34823896 | 0.5981264 | 0.2985 |
19 | 9.45749638 | −2.020902 | 0.38298 |
20 | −1.95639684 | 6.8142173 | 0.30587 |
21 | 6.22859991 | 7.6175812 | 0.1379 |
22 | 4.84957444 | 14.1012447 | 0.13958 |
23 | 3.26280007 | −2.1870801 | 0.26696 |
24 | −3.61956196 | 3.6408247 | 0.33199 |
25 | −5.20300959 | 6.5937315 | 0.39425 |
26 | 3.74976675 | 10.4215318 | 0.13719 |
27 | 8.4389697 | 14.5183123 | 0.072586 |
28 | 7.04080151 | 4.1116067 | 0.21658 |
29 | 8.87521784 | 17.9407346 | 0.22048 |
30 | 1.67284558 | 7.114281 | 0.3569 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migoya-Orué, Y.; Abe, O.E.; Radicella, S. Regional Spatial Mean of Ionospheric Irregularities Based on K-Means Clustering of ROTI Maps. Atmosphere 2024, 15, 1098. https://doi.org/10.3390/atmos15091098
Migoya-Orué Y, Abe OE, Radicella S. Regional Spatial Mean of Ionospheric Irregularities Based on K-Means Clustering of ROTI Maps. Atmosphere. 2024; 15(9):1098. https://doi.org/10.3390/atmos15091098
Chicago/Turabian StyleMigoya-Orué, Yenca, Oladipo E. Abe, and Sandro Radicella. 2024. "Regional Spatial Mean of Ionospheric Irregularities Based on K-Means Clustering of ROTI Maps" Atmosphere 15, no. 9: 1098. https://doi.org/10.3390/atmos15091098
APA StyleMigoya-Orué, Y., Abe, O. E., & Radicella, S. (2024). Regional Spatial Mean of Ionospheric Irregularities Based on K-Means Clustering of ROTI Maps. Atmosphere, 15(9), 1098. https://doi.org/10.3390/atmos15091098