Spatiotemporal Modeling of Carbon Fluxes over Complex Underlying Surfaces along the North Shore of Hangzhou Bay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Measurements and Data Processing
2.3. Daily Scale Urban Impervious Surface Area Data
2.4. Grid Data
2.5. Statistical Analysis
2.6. Machine Learning and Model Evaluation
3. Results
3.1. Important Driving Factors of Carbon Flux in a Long Time Series
3.2. Evaluation of Model Performance for Long-Term CO2 Flux
3.3. Simulation of Regional Carbon Flux Distribution Based on the RF Model
3.4. Effects of Impervious Surface Area in Simulating CO2 Flux
3.5. Interannual Variation of CO2 Flux Spatial Distribution
4. Discussion
5. Conclusions
- (1)
- Our study demonstrated that the four machine learning models used in our study can accurately simulate the long-term carbon flux over the complex underlying surfaces, with the RF model exhibiting the highest simulation performance.
- (2)
- The RF model can accurately portray the spatiotemporal distribution characteristics of carbon flux in Fengxian District, Shanghai.
- (3)
- Spatial heterogeneity in carbon flux was evident in Fengxian District on the north bank of Hangzhou Bay: the carbon flux value in the western region was lower compared to this in the eastern region, with a gradual increase observed from west to east within Fengxian District.
- (4)
- When simulating the spatiotemporal carbon flux of complex underlying surfaces using machine algorithms, the incorporation of the impervious surface area index marginally improved the accuracy of long-term carbon flux simulations. At a spatial scale, regions with larger impervious surface areas exhibit higher carbon flux values, indicating a strong correlation between carbon flux distribution and land use patterns. Consequently, the incorporation of the impervious surface area index serves as a relatively significant indicator for simulating spatial-scale carbon flux.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimmond, C.S.B.; King, T.S.; Cropley, F.D.; Nowak, D.J.; Souch, C. Local-scale fluxes of carbon dioxide in urban environments: Methodological challenges and results from Chicago. Environ. Pollut. 2002, 116, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Schmid, H.P. Experimental design for flux measurements: Matching scales of observations and fluxes. Agric. For. Meteorol. 1997, 87, 179–200. [Google Scholar] [CrossRef]
- Papale, D.; Valentini, A. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob. Change Biol. 2003, 9, 525–535. [Google Scholar] [CrossRef]
- Chen, H.; Huang, J.J.; Liang, H.; Wang, W.; Li, H.; Wei, Y.; Jiang, A.Z.; Zhang, P. Can evaporation from urban impervious surfaces be ignored? J. Hydrol. 2023, 616, 128582. [Google Scholar] [CrossRef]
- Lietzke, B.; Vogt, R.; Feigenwinter, C.; Parlow, E. On the controlling factors for the variability of carbon dioxideflux in a heterogeneous urban environment. Int. J. Climatol. 2015, 13, 3921–3941. [Google Scholar] [CrossRef]
- Crawford, B.; Grimmond, C.S.B.; Christen, A. Five years of carbon dioxide fluxes measurements in a highly vegetated suburban area. Atmos. Environ. 2011, 45, 896–905. [Google Scholar] [CrossRef]
- Gioli, B.; Toscano, P.; Lugato, E.; Matese, A.; Miglietta, F.; Zaldei, A.; Vaccari, F.P. Methane and carbon dioxidefluxes and source partitioning in urban areas: The case study of Florence, Italy. Environ. Pollut. 2012, 164, 125–131. [Google Scholar] [CrossRef]
- Schmutz, M.; Vogt, R.; Feigenwinter, C.; Parlow, E. Ten years of eddy covariance measurements in Basel, Switzerland: Seasonal and interannual variabilities of urban CO2 mole fraction and flux. J. Geophys. Res. Atmos. 2016, 121, 8649–8667. [Google Scholar] [CrossRef]
- Gevrey, M.; Dimopoulos, I.; Lek, S. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 2003, 160, 249–264. [Google Scholar] [CrossRef]
- Evrendilek, F. Quantifying biosphere-atmosphere exchange of CO2 using eddy covariance, wavelet denoising, neural networks, and multiple regression models. Agric. For. Meteorol. 2013, 171–172, 1–8. [Google Scholar] [CrossRef]
- Papale, D.; Black, T.A.; Carvalhais, N.; Cescatti, A.; Chen, J.; Jung, M.; Kiely, G.; Lasslop, G.; Mahecha, M.D.; Margolis, H.; et al. Effect of spatial sampling from european flux towers for estimating carbon and water fluxes with artificial neural networks. J. Geophys. Res. Biogeosci. 2015, 120, 1941–1957. [Google Scholar] [CrossRef]
- Wang, T.; Brender, P.; Ciais, P.; Piao, S.; Mahecha, M.D.; Chevallier, F.; Reichstein, M.; Ottlé, C.; Maignan, F.; Arain, A.; et al. State-dependent errors in a land surface model across biomes inferred from eddy covariance observations on multiple timescales. Ecol. Model. 2012, 246, 11–25. [Google Scholar] [CrossRef]
- Menzer, O.; Meiring, W.; Kyriakidis, P.C.; McFadden, J.P. Annual sums of carbon dioxide exchange over a heterogeneous urban landscape through machine learning based gap-filling. Atmos. Environ. 2015, 101, 312–327. [Google Scholar] [CrossRef]
- Tramontana, G.; Jung, M.; Schwalm, C.R.; Ichii, K.; Camps-Valls, G.; Ráduly, B.; Reichstein, M.; Arain, M.A.; Cescatti, A.; Kiely, G.; et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 2016, 13, 4291–4313. [Google Scholar] [CrossRef]
- Meyer, H.; Reudenbach, C.; Hengl, T.; Katurji, M.; Nauss, T. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ. Model. Softw. 2018, 101, 1–9. [Google Scholar] [CrossRef]
- Wang, G.; Han, Q.; Vries, B.D. Assessment of the relation between land use and carbon emission in Eindhoven, the Netherlands. J. Environ. Manag. 2019, 247, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Reitz, O.; Graf, A.; Schmidt, M.; Ketzler, G.; Leuchner, M. Upscaling net ecosystem exchange over heterogeneous landscapes with machine learning. J. Geophys. Res. Biogeosci. 2021, 126, JG005814. [Google Scholar] [CrossRef]
- Dou, X.; Chen, B.; Black, T.A.; Jassal, R.S.; Che, M. Impact of nitrogen fertilization on forest carbon sequestration water loss in a chronosequence of three douglasfir stands in the pacific northwest. Forests 2015, 6, 1897–1921. [Google Scholar] [CrossRef]
- Dou, X.M.; Yang, Y.G. Comprehensive Evaluation of Machine Learning Techniques for Estimating the Responses of Carbon Fluxes to Climatic Forces in Different Terrestrial Ecosystems. Atmosphere 2018, 9, 83. [Google Scholar] [CrossRef]
- Qin, Z.; Su, G.-L.; Zhang, J.-E.; Ouyang, Y.; Yu, Q.; Li, J. Identification of important factors for water vapor flux and CO2 exchange in a cropland. Ecol. Model. 2010, 221, 575–581. [Google Scholar] [CrossRef]
- Zhang, K.; Gong, Y.; Fa, H.; Zhao, M. CO2 flux characteristics of different plant communities in a subtropical urban ecosystem. Sustainability 2019, 11, 4879. [Google Scholar] [CrossRef]
- Zhang, K.; Gong, Y.; Escobedo, F.J.; Bracho, R.; Zhang, X.; Zhao, M. Measuring multi-scale urban forest carbon flux dynamics using an integrated eddy covariance technique. Sustainability 2019, 11, 4335. [Google Scholar] [CrossRef]
- Starr, G.; Staudhammer, C.L.; Loescher, H.W.; Mitchell, R.; Whelan, A.; Hiers, J.K.; O’brien, J.J. Time series analysis of forest carbon dynamics: Recovery of Pinus palustris physiology following a prescribed fire. New For. 2015, 46, 63–90. [Google Scholar] [CrossRef]
- Starr, G.; Staudhammer, C.L.; Wiesner, S.; Kunwor, S.; Loescher, H.W.; Baron, A.F.; Whelan, A.; Mitchell, R.J.; Boring, L. Carbon dynamics of Pinus palustris ecosystems following drought. Forests 2016, 7, 98. [Google Scholar] [CrossRef]
- Whelan, A.; Starr, G.; Staudhammer, C.L.; Loescher, H.W.; Mitchell, R.J. Effects of drought and prescribed fire on energy exchange in longleaf pine ecosystems. Ecosphere 2015, 6, 1–22. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple parameterisation for flux footprint predictions. Bound.-Layer Meteorol. 2004, 112, 503–523. [Google Scholar] [CrossRef]
- Chen, C.; Cleverly, J.; Zhang, L.; Yu, Q.; Eamus, D. Modelling seasonal and interannual variations in carbon and water fluxes in an aridzone acacia savanna woodland, 1981–2012. Ecosystems 2016, 19, 625–644. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, G.S.; Liu, S.H.; Sui, X. Seasonal contribution and interannual variation of evapotranspiration over a reed marsh (Phragmites australis) in Northeast China from 3-year eddy covariance data. Hydrol. Process. 2010, 24, 1039–1047. [Google Scholar]
- Liu, B.; Zhao, W.; Wen, Z.; Zhang, Z. Response of water and energy exchange to the environmental variable in a desert–oasis wetland of Northwest China. Hydrol. Process. 2014, 28, 6098–6112. [Google Scholar] [CrossRef]
- Gromping, U. Relative importance for linear regression in R: The package relaimpo. J. Stat. Softw. 2006, 17, 27. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 2018, 270, 654–669. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Chen, D.; Gong, L.; Xu, C.Y.; Halldin, S. A High resolution, gridded dataset for monthly temperature normals (1971–2000) in Sweden. Geogr. Ann. 2007, 89, 249–261. [Google Scholar] [CrossRef]
- Karimi, S.; Shiri, J.; Kisi, O.; Xu, T. Forecasting daily streamflow values: Assessing heuristic models. Nord. Hydrol. 2018, 49, 658–669. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Raghavendra, N.S.; Deka, P.C. Support vector machine applications in the field of hydrology: A review. Appl. Soft Comput. 2014, 19, 372–386. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Yang, Q.C.; Zhang, X.S. Improving SWAT for simulating water and carbon fluxes of forest ecosystems. Sci. Total Environ. 2016, 569–570, 1478–1488. [Google Scholar] [CrossRef]
- Hong, S.O.; Kim, J.; Byun, Y.H.; Hong, J.; Hong, J.W.; Lee, K.; Park, Y.S.; Lee, S.S. Intra-urban Variations of the CO2 Fluxes at the Surface-Atmosphere Interface in the Seoul Metropolitan Area. Asia-Pac. J. Atmos. Sci. 2023, 59, 417–431. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science. 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Peng, C.; Work, T.; Candau, J.N.; DesRochers, A.; Kneeshaw, D. Application of machine learning methods in forest ecology: Recent progress and future challenges. Environ. Rev. 2018, 26, 339–350. [Google Scholar] [CrossRef]
- Schmidt, A.; Wrzesinsky, T.; Klemm, O. Gapfilling and quality assessment of CO2 and water vapourfluxes above an urban area with radial basis function neural networks. Bound.-Layer Meteorol 2008, 126, 389–413. [Google Scholar] [CrossRef]
- Järvi, L.; Nordbo, A.; Junninen, H.; Riikonen, A.; Moilanen, J.; Nikinmaa, E.; Vesala, T. Seasonal and annual variation of carbon dioxide surfacefluxes in Helsinki, Finland, in 2006–2010. Atmos. Chem. Phys. 2012, 12, 8475–8489. [Google Scholar] [CrossRef]
- Zeng, J.; Matsunaga, T.; Tan, Z.-H.; Saigusa, N.; Shirai, T.; Tang, Y.; Peng, S.; Fukuda, Y. Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest. Sci. Data 2020, 7, 313. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lin, T.; Tang, N.; Xia, X. A parallel genetic algorithm based feature selection and parameter optimization for support vector machine. Sci. Program. 2016, 2016, 2739621. [Google Scholar] [CrossRef]
- Horemans, J.A.; Janssens, I.A.; Gielen, B.; Roland, M.; Deckmyn, G.; Verstraeten, A.; Neirynck, J.; Ceulemans, R. Weather, pollution and biotic factors drive net forest-atmosphere exchange of CO2 at different temporal scales in a temperate-zone mixed forest. Agric. For. Meteorol. 2020, 291, 108059. [Google Scholar] [CrossRef]
- Sleeter, B.M.; Liu, J.; Daniel, C.; Rayfield, B.; Sherba, J.; Hawbaker, T.J.; Zhu, Z.; Selmants, P.C.; Loveland, T.R. Effects of contemporary landuse and landcover change on the carbon balance of terrestrial ecosystems in the United States. Environ. Res. Lett. 2018, 13, 045006. [Google Scholar] [CrossRef]
- Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B.D.; Ciais, P.; Poulter, B.; Bayer, A.D.; Bondeau, A.; Calle, L.; Chini, L.P.; et al. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat. Geosci. 2017, 10, 79–84. [Google Scholar] [CrossRef]
- Caspersen, J.P.; Pacala, S.W.; Jenkins, J.C.; Hurtt, G.C.; Moorcroft, P.R.; Birdsey, R.A. Contributions of landuse history to carbon accumulation in U.S. Forests Science. Science 2000, 290, 1148–1151. [Google Scholar] [CrossRef]
- Yue, C.; Ciais, P.; Houghton, R.A.; Nassikas, A.A. Contribution of land use to the interannual variability of the land carbon cycle. Nat. Commun. 2020, 11, 3170. [Google Scholar] [CrossRef]
- Houghton, R.A.; House, J.I.; Pongratz, J.; Van Der Werf, G.R.; DeFries, R.S.; Hansen, M.C.; Le Quéré, C.; Ramankutty, N. Carbon emissions from land use and land–cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef]
- Cui, X.; Goff, T.; Cui, S.; Menefee, D.; Wu, Q.; Rajan, N.; Nair, S.; Phillips, N.; Walker, F. Predicting carbon and water vapor fluxes using machine learning and novel feature ranking algorithms. Sci. Total Environ. 2021, 775, 145130. [Google Scholar] [CrossRef]
- Dou, X.M.; Yang, Y.G. Estimating forest carbon fluxes using four different data-driven techniques based on long-term eddy covariance measurements: Model comparison and evaluation. Sci. Total Environ. 2018, 627, 78–94. [Google Scholar] [CrossRef]
- Hang, I.H.; Hsieh, C.I. Gap-filling of surface fluxes using machine learning algorithms in various ecosystems. Water 2020, 12, 3415. [Google Scholar] [CrossRef]
- Zhu, X.J.; Yu, G.R.; Chen, Z.; Zhang, W.K.; Han, L.; Wang, Q.F.; Chen, S.P.; Liu, S.M.; Wang, H.M.; Yan, J.H.; et al. Mapping Chinese annual gross primary productivity with eddy covariance measurements and machine learning. Sci. Total Environ. 2022, 857, 159390. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, G.; Yuan, X.; Li, C.; Xie, M.; Wang, Y.; Ma, X.; Shi, H.; Hamdi, R.; Hellwich, O.; et al. New data-driven method for estimation of net ecosystem carbon exchange at meteorological stations effectively increases the global carbon flux data. Methods Ecol. Evol. 2023, 14, 2449–2463. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, Y.; Wang, X.; Zhu, J.; Zhao, G.; Zheng, Z.; Tao, J.; Zhang, Y.; Li, J. Estimation of Net Ecosystem Productivity on the Tibetan Plateau Grassland from 1982 to 2018 Based on Random Forest Model. Remote Sens. 2023, 15, 2375. [Google Scholar] [CrossRef]
Nr | Name | Source | Temporal Resolution | Spatial Resolution | Unit |
---|---|---|---|---|---|
1 | Soil moisture | European Space Agency | 1 day | 0.25° | / |
2 | Precipitation | ERA-Interim | 1 day | 1° | mm |
3 | Temperature | ERA-Interim | 1 day | 0.1° | °C |
4 | Relative humidity | ERA-Interim | 1 month | 0.25° | % |
5 | Photosynthetic active radiation | ERA-Interim | 1 month | 0.125° | μmol·m−2·s−1 |
6 | Land use | European Space Agency | 1 year | 300 m | / |
Items | Abbreviation of Factors | Contribution (%) |
---|---|---|
CO2 flux | Ta | 61.222 |
Ts_10 cm | 13.12 | |
Rn | 13.304 | |
RH | 4.136 | |
IMS | 8.219 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Zhao, M.; Zhao, Z.; Shen, X.; Lu, Y.; Gao, J. Spatiotemporal Modeling of Carbon Fluxes over Complex Underlying Surfaces along the North Shore of Hangzhou Bay. Atmosphere 2024, 15, 727. https://doi.org/10.3390/atmos15060727
Zhang K, Zhao M, Zhao Z, Shen X, Lu Y, Gao J. Spatiotemporal Modeling of Carbon Fluxes over Complex Underlying Surfaces along the North Shore of Hangzhou Bay. Atmosphere. 2024; 15(6):727. https://doi.org/10.3390/atmos15060727
Chicago/Turabian StyleZhang, Kaidi, Min Zhao, Zhenyu Zhao, Xucheng Shen, Yanyu Lu, and Jun Gao. 2024. "Spatiotemporal Modeling of Carbon Fluxes over Complex Underlying Surfaces along the North Shore of Hangzhou Bay" Atmosphere 15, no. 6: 727. https://doi.org/10.3390/atmos15060727
APA StyleZhang, K., Zhao, M., Zhao, Z., Shen, X., Lu, Y., & Gao, J. (2024). Spatiotemporal Modeling of Carbon Fluxes over Complex Underlying Surfaces along the North Shore of Hangzhou Bay. Atmosphere, 15(6), 727. https://doi.org/10.3390/atmos15060727