Assessing Carbon Sink Capacity in Coal Mining Areas: A Case Study from Taiyuan City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.2.1. Data Source
2.2.2. Data Processing
2.3. Using Carbon Absorption Coefficient to Estimate Carbon Absorption
2.4. Using Carbon Density to Estimate Carbon Storage
2.4.1. Estimation of Carbon Storage
2.4.2. Selection and Calibration of Carbon Density
2.5. Using NPP to Estimate NEP
2.5.1. Estimation of NPP
2.5.2. Estimation of NEP
3. Results
3.1. Carbon Absorption in Mining Areas
3.2. Carbon Storage in Mining Areas
3.3. NEP Estimation in Mining Areas
4. Discussion
4.1. Discussion on Estimation Results and Their Methods
4.1.1. Discussion on Carbon Absorption and Its Estimation Methods
4.1.2. Discussion on Carbon Storage and Its Estimation Methods
4.1.3. Discussion on NPP and Its Estimation Methods
4.1.4. Discussion on Rh, NEP, and Their Estimation Methods
4.2. Evaluation of Methods for Estimating Carbon Sink Capacity in Mining Areas
4.3. Novelty and Limitations for Estimating Carbon Sink Capacity in Mining Areas
4.4. Countermeasures for Coal Mining Enterprises to Stabilize Carbon Sinks in Mining Areas
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wang, J.; Yang, M.; Liu, B.; Zhu, Q. Carbon sources/sinks and emission reduction and sink enhancement in green mining: A Review. J. China Coal Soc. 2024, 49, 1597–1610. [Google Scholar] [CrossRef]
- Yang, B.; Bai, Z.; Fu, S.; Cao, Y. Division of carbon sink functional areas and path to carbon neutrality in coal mines. Int. J. Coal Sci. Technol. 2022, 9, 48. [Google Scholar] [CrossRef]
- An, Y.; Bian, Z.; Dai, W.; Dong, J. Analysis on the gas carbon source and carbon sink in coal mining: A case study of Jiawang, Xuzhou. J. China Univ. Min. Technol. 2017, 46, 415–422. [Google Scholar] [CrossRef]
- Qiu, S.; Yu, Q.; Niu, T.; Fang, M.; Guo, H.; Liu, H.; Li, S. Study on the landscape space of typical mining areas in Xuzhou City from 2000 to 2020 and optimization strategies for carbon sink Enhancement. Remote Sens. 2022, 14, 4185. [Google Scholar] [CrossRef]
- Zhan, S.; Zhang, X.; Chen, X.; Zhou, Y.; Long, L.; Xu, Y. Effects of landuse change on spatial and temporal patterns of carbon sources/sinks in Huainan mining area from 2000 to 2020. Bull. Soil Water Conserv. 2023, 43, 310–319. [Google Scholar] [CrossRef]
- Hou, H.; Zhang, S.; Ding, Z.; Huang, A.; Tian, Y. Spatiotemporal dynamics of carbon storage in terrestrial ecosystem vegetation in the Xuzhou coal mining area, China. Environ. Earth Sci. 2015, 74, 1657–1669. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, J.; Bi, Y.; Peng, S.; Yue, H.; He, X. Spatiotemporal dynamic change analysis of carbon storage in desertification open-pit mine. J. China Coal Soc. 2022, 47, 214–224. [Google Scholar] [CrossRef]
- Ma, T. Study on Calculating the Carbon Sink of Coal Mining Subsidence Wetland in Xuzhou Pan’an Lake; China University of Mining and Technology: Xuzhou, China, 2022. [Google Scholar]
- Fu, Y.; He, Y.; Chen, W.; Xiao, W.; Ren, H.; Shi, Y.; Hu, Z. Dynamics of carbon storage driven by land use/land cover transformation in coal mining areas with a high groundwater table: A case study of Yanzhou coal mine, China. Environ. Res. 2024, 247, 118392. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; He, Z.; Liu, X.; Zhang, K.; Wu, M. Study on spatio-temporal variation and prediction of land use-carbon storage in high groundwaterlevel mining area. Coal Sci. Technol. 2024, 52, 355–365. [Google Scholar] [CrossRef]
- Wang, X.; Han, J.; Lin, J. Response of land use and net primary productivity to coal mining: A case study of Huainan city and Its mining areas. Land 2022, 11, 973. [Google Scholar] [CrossRef]
- Yang, F.; Wang, J.; Zhang, C.; Li, J.; Xie, H.; Zhuoge, Z. The Impact of human activities on net primary productivity in a grassland open-pit mine: The case study of the Shengli mining area in inner mongolia, China. Land 2022, 11, 743. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Y.; Liu, W.; Huang, Z. System construction and the function improvement of ecological carbon sink in coal mining areas under the carbon neutral strategy. Environ. Sci. 2022, 43, 2237–2240. [Google Scholar] [CrossRef]
- He, Z.; Luo, L.; Du, Y.; Gou, L. Countermeasures to realize ecological restoration and emission reduction and increase of sinks in mining areas under the background of carbon neutrality. Multipurp. Util. Miner. Resour. 2022, 2, 9–14. [Google Scholar] [CrossRef]
- Chen, J. Research on Spatiotemporal Changes and Impact Mechanisms of Carbon Sources/Sinks in the Ecosystem of the Western Sichuan Plateau; Chengdu University of Information Technology: Chengdu, China, 2020. [Google Scholar]
- Chuai, X.; Qi, X.; Zhang, X.; Li, J.; Yuan, Y.; Guo, X.; Huang, X.; Park, S.; Zhao, R.; Xie, X.; et al. Land degradation monitoring using terrestrial ecosystem carbon sinks/sources and their response to climate change in China. Land Degrad. Dev. 2018, 29, 3489–3502. [Google Scholar] [CrossRef]
- Yuan, M.; Li, M.; Liu, H.; Lv, P.; Li, B.; Zheng, W. Subsidence monitoring base on SBAS-InSAR and slope stability analysis method for damage analysis in mountainous mining subsidence regions. Remote Sens. 2021, 13, 3107. [Google Scholar] [CrossRef]
- Zhong, J.L.; Qi, W.; Dong, M.; Xu, M.H.; Zhang, J.Y.; Xu, Y.X.; Zhou, Z.J. Land use carbon emission measurement and risk zoning under the background of the carbon peak: A case study of Shandong province, China. Sustainability 2022, 14, 15130. [Google Scholar] [CrossRef]
- Cao, Y.; Cui, J. Analysis on the spatiotemporal pattern and prediction of carbon sources and sinks of land use in Heilongjiang province under the background of dual carbon. China Resour. Compr. Util. 2023, 41, 231–234, 238. [Google Scholar]
- Han, F.; Kasimu, A.; Wei, B.; Zhang, X.; Aizizi, Y.; Chen, J. Spatial and temporal patterns and risk assessment of carbon source and sink balance of land use in watersheds of arid zones in China–a Case study of Bosten lake Basin. Ecol. Indic. 2023, 157, 111308. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Dong, H.; Zhang, L.; He, S. Spatial–temporal change analysis and multi-scenario simulation prediction of land-use carbon emissions in the Wuhan urban agglomeration, China. Sustainability 2023, 15, 11021. [Google Scholar] [CrossRef]
- Xie, L.; Bai, Z.; Yang, B.; Fu, S. Simulation analysis of land-use pattern evolution and valuation of terrestrial ecosystem carbon storage of Changzhi city, China. Land 2022, 11, 1270. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.; Tang, Q. Carbon storage assessment in the upper reaches of the Fenhe River under different land use scenarios. Acta Ecol. Sin. 2021, 41, 360–373. [Google Scholar] [CrossRef]
- Wang, C.; Luo, J.; Qing, F.; Tang, Y.; Wang, Y. Analysis of the driving force of spatial and temporal differentiation of carbon storage in Taihang mountains Based on InVEST model. Appl. Sci. 2022, 12, 10662. [Google Scholar] [CrossRef]
- Zhang, C.; Xiang, Y.; Fang, T.; Chen, Y.; Wang, S. Spatio-temporal evolution and prediction of carbon storage in Taiyuan ecosystem under the influence of LUCC. Saf. Environ. Eng. 2022, 29, 248–258. [Google Scholar] [CrossRef]
- Fan, J. Evaluation of Land Ecological Restoration in Arid and Semi-Arid Mining Areas-Taking Shendong Mining Area as an Example; Inner Mongolia Normal University: Hohhot, China, 2023. [Google Scholar]
- Sun, Y. Analysis on the Changes and Influencing Factors of Ecosystem Services in Qinshui Coalfield; Shanxi University of Finance & Economics: Taiyuan, China, 2023. [Google Scholar]
- Wang, B.; Zhen, Z.; Xi, R.; Chen, X.; Qiao, Q. Land use and carbon stock changes in Taiyuan under different scenarios. Environ. Sci. Technol. 2023, 46, 219–227. [Google Scholar] [CrossRef]
- Zhou, K.; Du, J.; Shen, X.; Pu, G.; Zhang, D.; Dang, X. Spatial and temporal variability of vegetation net primary productivity in Qiangtang national nature reserve under climate change. Chin. J. Agrometeorol. 2021, 42, 627–641. [Google Scholar] [CrossRef]
- Lyu, J.; Fu, X.; Lu, C.; Zhang, Y.; Luo, P.; Guo, P.; Huo, A.; Zhou, M. Quantitative assessment of spatiotemporal dynamics in vegetation NPP, NEP and carbon sink capacity in the Weihe river Basin from 2001 to 2020. J. Clean. Prod. 2023, 428, 139384. [Google Scholar] [CrossRef]
- Pei, Z.; Zhou, C.; Ouyang, H.; Yang, W. A carbon budget of alpine steppe area in the Tibetan Plateau. Geogr. Res. 2010, 29, 102–110. [Google Scholar]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The Carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; He, Y.; Wang, X.; Chen, F. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Piao, S.; Yue, C.; Ding, J.; Guo, Z. Perspectives on the Role of Terrestrial Ecosystems in the ‘Carbon Neutrality’ Strategy. Sci. China Earth Sci. 2022, 65, 1178–1186. [Google Scholar] [CrossRef]
- Deng, Z.; Ding, W.; Pu, X.; Lyu, Y.; Wang, Y. Spatial-temporal distribution of carbon storage in Qilian mountain national park Based on InVEST model. Bull. Soil Water Conserv. 2022, 42, 324–334, 396. [Google Scholar] [CrossRef]
- Wang, F.; Cao, Y.; Zhou, S.; Fan, S.; Jiang, X. Estimation of vegetation carbon sink in the Yellow River Basin ecological function area and analysis of its main meteorological elements. Acta Ecol. Sin. 2023, 43, 2501–2514. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Wang, Y.; Zhang, Y.; Jing, L.; Li, J. Climate change in arid regions of Northwest China and its impact on potential grassland productivity. Ecol. Sci. 2020, 39, 182–192. [Google Scholar] [CrossRef]
- Cai, Y.; Zheng, Y.; Wang, Y.; Wu, R. Analysis of terrestrial net primary productivity by improved CASA model in Three-river headwaters region. J. Nanjing Univ. Inf. Sci. Technol. Nat. Sci. Ed. 2013, 5, 34–42. [Google Scholar] [CrossRef]
- Sun, Q.; Li, B.; Li, F.; Zhang, Z.; Ding, L.; Zhang, T.; Xu, L. Review on the estimation of net primary productivity of vegetation in the Three-River HeadwaterRegion, China. Acta Geogr. Sin. 2016, 71, 1596–1612. [Google Scholar] [CrossRef]
- Tian, H.; Bi, R.; Zhu, H.; Yan, J. Driving factors and gradient effect of net primary productivity in Fenhe River Basin. Chin. J. Ecol. 2019, 38, 3066–3074. [Google Scholar] [CrossRef]
- Su, S.; Jin, D.; Zhang, T. Characteristics temporal and spatial change and impact factors of net primary productivity of vegetation in Shanxi province. J. Shanxi Agric. Sci. 2022, 50, 551–558. [Google Scholar] [CrossRef]
- Song, W.; Xu, X.; Lin, Y.; Chen, L. Spatial and temporal variation and driving forces for the net primary productivity of vegetation on the Loess Plateau. J. Beijing For. Univ. 2023, 45, 29–42. [Google Scholar] [CrossRef]
- Sun, C.; Qiao, P.; Wang, J.; Wang, H.; Sun, J. Spatio-temporal variation characteristics of net primary productivity in Lvliang contiguous poverty areas since 2000. Acta Ecol. Sin. 2022, 42, 277–286. [Google Scholar] [CrossRef]
- Wang, W. Temporal and Spatial Variation of Carbon Source Carbon Sinks in Tibet Grassland Ecosystem and Its Relationship with Climate Factors; Chang’an University: Xi’an, China, 2019. [Google Scholar]
- Liu, Z. Temporal and Spatial Dynamics of Vegetation Net Primary Productivity and Its Climate Driving Factors Analysis in the Loess Plateau of China; Northwest Agriculture & Forestry University: Xianyang, China, 2022. [Google Scholar]
- Huang, H.; Jia, J.; Liu, S.; Chen, D. Analysis of spatial-temporal evolution and influencing factors of carbon sinks in Yangtze River economic belt from 2000 to 2020. Res. Environ. Sci. 2023, 36, 1564–1576. [Google Scholar] [CrossRef]
Land Use Type | Area in 2021 (t/hm2) | Notes |
---|---|---|
Cultivated land | 5.66 | |
Forest land | 201.75 | |
Grassland | 0 | Undivided in 2021 |
Land for mining and industry | 7.16 | Belonging to construction land |
Land for residential area | 7.76 | |
Land for transportation | 3.89 | |
Water area and land for water conservancy facilities | 0.35 | Abbreviated as water area |
Other land | 8.79 |
Land Use Type | Carbon Absorption Coefficient (t/hm2) | Source |
---|---|---|
Cultivated land | 0.007 | An et al. [3] |
Forest land | 0.581 | Cao and Cui. [19]; Zhang et al. [21] |
Grassland | 0.021 | Zhan et al. [5]; Zhang et al. [21] |
Water area | 0.253 | Cao and Cui. [19]; Zhang et al. [21]; Zhong et al. [18] |
Other land | 0.005 | Han et al. [20]; Zhang et al. [21]; Zhong et al. [18] |
Land Use Type | Aboveground Carbon Density (t/hm2) | Underground Carbon Density (t/hm2) | Soil Carbon Density (t/hm2) | Carbon Density of Dead Organic Matter (t/hm2) |
---|---|---|---|---|
Cultivated land | 1.65 | 0.32 | 87.09 | 0.16 |
Forest land | 28.67 | 5.98 | 100.61 | 2.87 |
Grassland | 3.35 | 2.10 | 78.84 | 0.33 |
Land for mining and industry | 0.03 | 0 | 61.55 | 0 |
Land for residential area | 0 | 0 | 50.07 | 0 |
Land for transportation | 0 | 0 | 47.77 | 0 |
Water area | 0.02 | 0 | 0 | 0 |
Other land | 0.81 | 0.14 | 18.76 | 0.08 |
Land Use Type | Cultivated Land | Forest Land | Grassland | Water Area | Other Land |
---|---|---|---|---|---|
Carbon absorption (t) | 0.04 | 117.22 | 0 | 0.09 | 0.04 |
Land Use Type | Aboveground Carbon Storage (t) | Underground Carbon Storage (t) | Soil Carbon Storage (t) | Dead Organic Matter Carbon Storage (t) | Total Carbon Storage (t) |
---|---|---|---|---|---|
Cultivated land | 9.34 | 1.81 | 492.93 | 0.91 | 504.99 |
Forest land | 5784.17 | 1206.47 | 20,298.07 | 579.02 | 27,867.73 |
Grassland | 0 | 0 | 0 | 0 | 0 |
Land for mining and industry | 0.21 | 0 | 440.70 | 0 | 440.91 |
Land for residential area | 0 | 0 | 388.54 | 0 | 388.54 |
Land for transportation | 0 | 0 | 185.83 | 0 | 185.83 |
Water area | 0.01 | 0 | 0 | 0 | 0.01 |
Other land | 7.12 | 1.23 | 164.90 | 0.70 | 173.95 |
Mining area | 5800.85 | 1209.51 | 21,970.96 | 580.63 | 29,561.96 |
Study Area | T | R | NPPT | NPPR |
---|---|---|---|---|
This study | 10.39 | 470.70 | 1441.09 | 805.25 |
Wuzhong City | 10.19 | 189.45 | 1423.53 | 353.02 |
Zhongning County | 10.15 | 196.89 | 1419.51 | 365.69 |
Guyuan City | 7.12 | 439.30 | 1156.51 | 754.81 |
Longde County | 5.76 | 500.11 | 1043.70 | 843.23 |
Study Area | Estimation Results of NPP [g/(m2·a)] | Study Time (Year) | Method | Source |
---|---|---|---|---|
This study | 805.25 | 2021 | Miami model | |
Fenhe River Basin | 291.57 | From 2000 to 2015 | CASA model | Tian et al. [40] |
Shanxi Province | 273.67 | From 2000 to 2019 | CASA model | Su et al. [41] |
Loess Plateau | 300.74 | From 2001 to 2019 | CASA model | Song et al. [42] |
Lvliang contiguous poverty areas | 241.24–331.70 | From 2000 to 2018 | CASA model | Sun et al. [43] |
Index | Units | Main Estimation Methods | Advantage | Disadvantage | Notes |
---|---|---|---|---|---|
Carbon absorption | t | The product of carbon absorption coefficient and area | The simplest method | The carbon absorption coefficient is not yet unified | Carbon absorption is also known as a carbon sink. |
Carbon storage | t | The product of carbon density and area | The method is relatively simple | The InVEST model ignores the influence of interannual changes in carbon density; at least two years of carbon storage data are required to obtain carbon sink capacity. | Carbon sink refers to the increase in carbon storage over two years. |
NEP | g/(m2·a) | NPP minus Rh | The most complex method | Affected by NPP and Rh calculation results, the estimation accuracy of NPP is relatively low. | NEP with a positive value represents carbon sink. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Liu, Y.; Guo, J.; Bai, H.; Wu, Z.; Liu, Y.; Li, R. Assessing Carbon Sink Capacity in Coal Mining Areas: A Case Study from Taiyuan City, China. Atmosphere 2024, 15, 765. https://doi.org/10.3390/atmos15070765
Chen F, Liu Y, Guo J, Bai H, Wu Z, Liu Y, Li R. Assessing Carbon Sink Capacity in Coal Mining Areas: A Case Study from Taiyuan City, China. Atmosphere. 2024; 15(7):765. https://doi.org/10.3390/atmos15070765
Chicago/Turabian StyleChen, Fan, Yang Liu, Jinkai Guo, He Bai, Zhitao Wu, Yang Liu, and Ruijin Li. 2024. "Assessing Carbon Sink Capacity in Coal Mining Areas: A Case Study from Taiyuan City, China" Atmosphere 15, no. 7: 765. https://doi.org/10.3390/atmos15070765
APA StyleChen, F., Liu, Y., Guo, J., Bai, H., Wu, Z., Liu, Y., & Li, R. (2024). Assessing Carbon Sink Capacity in Coal Mining Areas: A Case Study from Taiyuan City, China. Atmosphere, 15(7), 765. https://doi.org/10.3390/atmos15070765