Evaluation of the Zenith Tropospheric Delay (ZTD) Derived from VMF3_FC and VMF3_OP Products Based on the CMONOC Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. VMF ZTD Data
2.2. CMONOC ZTD Data
2.3. Statistical Indicators
3. Comparison and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Dodson, A.; Shardlow, P.; Hubbard, L.; Elgered, G.; Jarlemark, P. Wet tropospheric effects on precise relative GPS height determination. J. Geod. 1996, 70, 188–202. [Google Scholar] [CrossRef]
- Yang, F.; Meng, X.; Guo, J.; Yuan, D.; Chen, M. Development and evaluation of the refined zenith tropospheric delay (ZTD) models. Satell. Navig. 2021, 2, 21. [Google Scholar] [CrossRef]
- Bock, O.; Doerflinger, E. Atmospheric modeling in GPS data analysis for high accuracy positioning. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 373–383. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. (1988–2005) 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Yang, F.; Sun, Y.; Meng, X.; Guo, J.; Gong, X. Assessment of tomographic window and sampling rate effects on GNSS water vapor tomography. Satell. Navig. 2023, 4, 7. [Google Scholar] [CrossRef]
- Yang, F.; Gong, X.; Wang, Y.; Liu, M.; Li, J.; Xu, T.; Hao, R. GNSS water vapor tomography based on Kalman filter with optimized noise covariance. GPS Solut. 2023, 27, 181. [Google Scholar] [CrossRef]
- Vaquero-Martínez, J.; Antón, M. Review on the role of GNSS meteorology in monitoring water vapor for atmospheric physics. Remote Sens. 2021, 13, 2287. [Google Scholar] [CrossRef]
- Li, H.; Choy, S.; Zaminpardaz, S.; Carter, B.; Sun, C.; Purwar, S.; Liang, H.; Li, L.; Wang, X. Investigating the inter-relationships among multiple atmospheric variables and their responses to precipitation. Atmosphere 2023, 14, 571. [Google Scholar] [CrossRef]
- Li, L.; Wu, S.; Zhang, K.; Wang, X.; Li, W.; Shen, Z.; Zhu, D.; He, Q.; Wan, M. A new zenith hydrostatic delay model for real-time retrievals of GNSS-PWV. Atmos. Meas. Tech. 2021, 14, 6379–6394. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Wei, Y.; Wang, H. The New PWV Conversion Models Based on GNSS and Meteorological Elements in the China Region. Atmosphere 2022, 13, 1810. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, Y.; Li, Z.; Yao, Y. Retrieval of a high-precision drought monitoring index by using GNSS-derived ZTD and temperature. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8730–8743. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, K.; Sun, T.; Yao, Y.; Li, Z. A novel regional drought monitoring method using GNSS-derived ZTD and precipitation. Remote Sens. Environ. 2023, 297, 113778. [Google Scholar] [CrossRef]
- Zhao, Q.; Su, J.; Li, Z.; Yang, P.; Yao, Y. Adaptive aerosol optical depth forecasting model using GNSS observation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–9. [Google Scholar] [CrossRef]
- Wei, P.; Xie, S.; Huang, L.; Liu, L. Ingestion of GNSS-Derived ZTD and PWV for spatial interpolation of PM2.5 concentration in Central and Southern China. Int. J. Environ. Res. Public Health 2021, 18, 7931. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Herring, T.; Shapiro, I.; Rogers, A.; Elgered, G. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- Yang, F.; Wang, L.; Li, Z.; Tang, W.; Meng, X. A weighted mean temperature (Tm) augmentation method based on global latitude zone. GPS Solut. 2022, 26, 141. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, F.; Liu, M.; Li, Z.; Gong, X.; Wang, Y. Evaluation of the weighted mean temperature over China using multiple reanalysis data and radiosonde. Atmos. Res. 2023, 285, 106664. [Google Scholar] [CrossRef]
- Hopfield, H. Two-quartic tropospheric refractivity profile for correcting satellite data. J. Geophys. Res. 1969, 74, 4487–4499. [Google Scholar] [CrossRef]
- Black, H.; Eisner, A. Correcting satellite Doppler data for tropospheric effects. J. Geophys. Res. Atmos. 1984, 89, 2616–2626. [Google Scholar] [CrossRef]
- Askne, J.; Nordius, H. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci. 1987, 22, 379–386. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Use Artif. Satell. Geod. 1972, 15, 247–251. [Google Scholar] [CrossRef]
- Yao, Y.; He, C.; Zhang, B.; Xu, C. A new global zenith tropospheric delay model GZTD. Chin. J. Geophys. 2013, 56, 2218–2227. [Google Scholar] [CrossRef]
- Li, W.; Yuan, Y.; Ou, J.; Li, H.; Li, Z. A new global zenith tropospheric delay model IGGtrop for GNSS applications. Chin. Sci. Bull. 2012, 57, 2132–2139. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Wang, J.; Tan, W. SHAtrop: Empirical ZTD model based on CMONOC GNSS network. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 1588–1595. [Google Scholar] [CrossRef]
- Böhm, J.; Heinkelmann, R.; Schuh, H. Short note: A global model of pressure and temperature for geodetic applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Landskron, D.; Böhm, J. VMF3/GPT3: Refined discrete and empirical troposphere mapping functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef]
- Yang, F.; Guo, J.; Zhang, C.; Li, Y.; Li, J. A regional zenith tropospheric delay (ZTD) model based on GPT3 and ANN. Remote Sens. 2021, 13, 838. [Google Scholar] [CrossRef]
- Fei, Y.; Jiming, G.; Ming, C.; Di, Z. Establishment and analysis of a refinement method for the GNSS empirical weighted mean temperature model. Acta Geod. Et Cartogr. Sin. 2022, 51, 2339–2345. [Google Scholar] [CrossRef]
- Collins, P.; Langley, R.; LaMance, J. Limiting factors in tropospheric propagation delay error modelling for GPS airborne navigation. In Proceedings of the 52nd Annual Meeting of The Institute of Navigation (1996), Cambridge, MA, USA, 19–21 June 1996; pp. 519–528. [Google Scholar]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. Solid Earth 2006, 111, B02406. [Google Scholar] [CrossRef]
- Nafisi, V.; Urquhart, L.; Santos, M.; Nievinski, F.; Böhm, J.; Wijaya, D.; Schuh, H.; Ardalan, A.; Hobiger, T.; Ichikawa, R. Comparison of ray-tracing packages for troposphere delays. IEEE Trans. Geosci. Remote Sens. 2012, 50, 469–481. [Google Scholar] [CrossRef]
- Boisits, J.; Landskron, D.; Böhm, J. VMF3o: The Vienna Mapping Functions for optical frequencies. J. Geod. 2020, 94, 57. [Google Scholar] [CrossRef] [PubMed]
- Glaner, M.F.; Weber, R. An open-source software package for Precise Point Positioning: raPPPid. GPS Solut. 2023, 27, 174. [Google Scholar] [CrossRef]
- Geng, J.; Chen, X.; Pan, Y.; Mao, S.; Li, C.; Zhou, J.; Zhang, K. PRIDE PPP-AR: An open-source software for GPS PPP ambiguity resolution. GPS Solut. 2019, 23, 91. [Google Scholar] [CrossRef]
- King, R.; Bock, Y. Documentation for the GAMIT GPS Processing Software Release 10.2; Mass. Inst. of Technol.: Cambridge, MA, USA, 2005. [Google Scholar]
- Gandolfi, S.; Tavasci, L.; Poluzzi, L. Improved PPP performance in regional networks. GPS Solut. 2016, 20, 485–497. [Google Scholar] [CrossRef]
- Dach, R.; Brockmann, E. International GNSS Service Technical Report 2022 (IGS Annual Report); IGS Central Bureau and University of Bern/Bern Open Publishing: Bern, Switzerland, 2023. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Li, H.; Balz, T. Global assessment of the GNSS single point positioning biases produced by the residual tropospheric delay. Remote Sens. 2021, 13, 1202. [Google Scholar] [CrossRef]
- Osah, S.; Acheampong, A.A.; Fosu, C.; Dadzie, I. Evaluation of zenith tropospheric delay derived from ray-traced VMF3 product over the West African region using GNSS observations. Adv. Meteorol. 2021, 2021, 8836806. [Google Scholar] [CrossRef]
- Yang, F.; Guo, J.; Li, J.; Zhang, C.; Chen, M. Assessment of the troposphere products derived from VMF data server with ERA5 and IGS data over China. Earth Space Sci. 2021, 8, e2021EA001815. [Google Scholar] [CrossRef]
- Li, J.; Yang, F.; Yuan, D.; Wang, H.; Song, S.; Tan, J.; Wen, Z. Unraveling the Accuracy Enigma: Investigating ZTD Data Precision in TUW-VMF3 and GFZ-VMF3 Products using a Comprehensive Global GPS Dataset. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5800710. [Google Scholar] [CrossRef]
- Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. The ECMWF ensemble prediction system: Methodology and validation. Q. J. R. Meteorol. Soc. 1996, 122, 73–119. [Google Scholar] [CrossRef]
- Jung, T.; Balsamo, G.; Bechtold, P.; Beljaars, A.; Koehler, M.; Miller, M.; Morcrette, J.J.; Orr, A.; Rodwell, M.; Tompkins, A.M. The ECMWF model climate: Recent progress through improved physical parametrizations. Q. J. R. Meteorol. Soc. 2010, 136, 1145–1160. [Google Scholar] [CrossRef]
- Kouba, J. Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1). J. Geod. 2008, 82, 193–205. [Google Scholar] [CrossRef]
- Yu, J.; Tan, K.; Zhang, C.; Zhao, B.; Wang, D.; Li, Q. Present-day crustal movement of the Chinese mainland based on Global Navigation Satellite System data from 1998 to 2018. Adv. Space Res. 2019, 63, 840–856. [Google Scholar] [CrossRef]
- Liang, H.; Cao, Y.; Wan, X.; Xu, Z.; Wang, H.; Hu, H. Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China. Geod. Geodyn. 2015, 6, 135–142. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, Z.; Wang, N.; Zhang, B.; Li, H.; Li, M.; Huo, X.; Ou, J. Monitoring the ionosphere based on the Crustal Movement Observation Network of China. Geod. Geodyn. 2015, 6, 73–80. [Google Scholar] [CrossRef]
- Dash, C.S.K.; Behera, A.K.; Dehuri, S.; Ghosh, A. An outlier detection and elimination framework in classification task of data mining. Decis. Anal. J. 2023, 6, 100164. [Google Scholar] [CrossRef]
Residual | VMF3_FC | VMF3_OP |
---|---|---|
(−5, 5) | 32.48% | 36.02% |
(−10, 10) | 56.22% | 61.86% |
(−15, 15) | 71.62% | 77.53% |
(−20, 20) | 81.48% | 86.63% |
(−25, 25) | 87.80% | 91.91% |
(−30, 30) | 91.83% | 94.98% |
Case | VMF3_FC | VMF3_OP |
---|---|---|
day | 17.25 | 14.76 |
night | 17.79 | 14.48 |
Case | VMF3_FC | VMF3_OP |
---|---|---|
non-interpolation | 17.76 | 14.51 |
interpolation | 17.48 | 14.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Chen, L.; Yang, F.; Ma, J.; Zhang, J.; Sun, W.; Xu, S. Evaluation of the Zenith Tropospheric Delay (ZTD) Derived from VMF3_FC and VMF3_OP Products Based on the CMONOC Data. Atmosphere 2024, 15, 766. https://doi.org/10.3390/atmos15070766
Zhang H, Chen L, Yang F, Ma J, Zhang J, Sun W, Xu S. Evaluation of the Zenith Tropospheric Delay (ZTD) Derived from VMF3_FC and VMF3_OP Products Based on the CMONOC Data. Atmosphere. 2024; 15(7):766. https://doi.org/10.3390/atmos15070766
Chicago/Turabian StyleZhang, Haoran, Liang Chen, Fei Yang, Jingge Ma, Junya Zhang, Wenyu Sun, and Shiqi Xu. 2024. "Evaluation of the Zenith Tropospheric Delay (ZTD) Derived from VMF3_FC and VMF3_OP Products Based on the CMONOC Data" Atmosphere 15, no. 7: 766. https://doi.org/10.3390/atmos15070766
APA StyleZhang, H., Chen, L., Yang, F., Ma, J., Zhang, J., Sun, W., & Xu, S. (2024). Evaluation of the Zenith Tropospheric Delay (ZTD) Derived from VMF3_FC and VMF3_OP Products Based on the CMONOC Data. Atmosphere, 15(7), 766. https://doi.org/10.3390/atmos15070766