Quantifying the Impacts of Density-Dependent Flow on Surface Water–Groundwater Interaction in a Riparian Setup
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Model and Scenarios
2.2. Numerical Model
2.3. Geometry Grid
2.4. Boundary Conditions
2.5. Parametrization
3. Results and Discussion
3.1. Initial Condition Model
3.2. River–Floodplain Flow Regime
3.2.1. Gaining River
3.2.2. Losing River
3.3. ET
3.4. Recharge
3.5. Pumping
3.6. SW–GW Density Contrast
4. Limitations, Implications, and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conant, B., Jr.; Robinson, C.E.; Hinton, M.J.; Russell, H.A. A framework for conceptualizing groundwater-surface water interactions and identifying potential impacts on water quality, water quantity, and ecosystems. J. Hydrol. 2019, 574, 609–627. [Google Scholar] [CrossRef]
- Alaghmand, S.; Beecham, S.; Jolly, I.D.; Holland, K.L.; Woods, J.A.; Hassanli, A. Modelling the impacts of river stage manipulation on a complex river-floodplain system in a semi-arid region. Environ. Model. Softw. 2014, 59, 109–126. [Google Scholar] [CrossRef]
- Magliozzi, C.; Grabowski, R.C.; Packman, A.I.; Krause, S. Toward a conceptual framework of hyporheic exchange across spatial scales. Hydrol. Earth Syst. Sci. 2018, 22, 6163–6185. [Google Scholar] [CrossRef]
- Krause, S.; Hannah, D.M.; Fleckenstein, J.H.; Heppell, C.M.; Kaeser, D.; Pickup, R.; Pinay, G.; Robertson, A.L.; Wood, P.J. Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology 2011, 4, 481–499. [Google Scholar] [CrossRef]
- Michael, M.R.; Hartwig, M.; Wagenschein, D.; Kebede, T.; Borchardt, D. The importance of hyporheic zone processes on ecological functioning and solute transport of streams and rivers. In Ecosystem Services and River Basin Ecohydrology; Springer: Dordrecht, The Netherlands, 2015; pp. 57–82. [Google Scholar] [CrossRef]
- Korbel, K.; Rutlidge, H.; Hose, G.; Eberhard, S.; Andersen, M. Dynamics of microbiotic patterns reveal surface water groundwater interactions in intermittent and perennial streams. Sci. Total Environ. 2022, 811, 152380. [Google Scholar] [CrossRef] [PubMed]
- Shuai, P.; Cardenas, M.B.; Knappett, P.S.; Bennett, P.C.; Neilson, B.T. Denitrification in the banks of fluctuating rivers: The effects of river stage amplitude, sediment hydraulic conductivity and dispersivity, and ambient groundwater flow. Water Resour. Res. 2017, 53, 7951–7967. [Google Scholar] [CrossRef]
- Stegen, J.C.; Fredrickson, J.K.; Wilkins, M.J.; Konopka, A.E.; Nelson, W.C.; Arntzen, E.V.; Chrisler, W.B.; Chu, R.K.; Danczak, R.E.; Fansler, S.J. Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat. Commun. 2016, 7, 11237. [Google Scholar] [CrossRef] [PubMed]
- Boulton, A.J.; Datry, T.; Kasahara, T.; Mutz, M.; Stanford, J.A. Ecology and management of the hyporheic zone: Stream-groundwater interactions of running waters and their floodplains. J. N. Am. Benthol. Soc. 2010, 29, 26–40. [Google Scholar] [CrossRef]
- Hester, E.T.; Cardenas, M.B.; Haggerty, R.; Apte, S.V. The importance and challenge of hyporheic mixing. Water Resour. Res. 2017, 53, 3565–3575. [Google Scholar] [CrossRef]
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrol. Process. 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Kang, H.; Sridhar, V. Drought assessment with a surface-groundwater coupled model in the Chesapeake Bay watershed. Environ. Model. Softw. 2019, 119, 379–389. [Google Scholar] [CrossRef]
- Mosase, E.; Ahiablame, L.; Park, S.; Bailey, R. Modelling potential groundwater recharge in the Limpopo River Basin with SWAT-MODFLOW. Groundw. Sustain. Dev. 2019, 9, 100260. [Google Scholar] [CrossRef]
- de Graaf, I.E.M.; van Beek, R.L.P.H.; Gleeson, T.; Moosdorf, N.; Schmitz, O.; Sutanudjaja, E.H.; Bierkens, M.F.P. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion. Adv. Water Resour. 2017, 102, 53–67. [Google Scholar] [CrossRef]
- Maxwell, R.M.; Condon, L.E.; Kollet, S.J. A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci. Model Dev. 2015, 8, 923–937. [Google Scholar] [CrossRef]
- Alaghmand, S.; Beecham, S.; Hassanli, A. Impacts of groundwater extraction on salinization risk in a semi-arid floodplain. Nat. Hazards Earth Syst. Sci. 2013, 13, 3405–3418. [Google Scholar] [CrossRef]
- Alaghmand, S.; Beecham, S.; Woods, J.A.; Holland, K.L.; Jolly, I.D.; Hassanli, A.; Nouri, H. Quantifying the impacts of artificial flooding as a salt interception measure on a river-floodplain interaction in a semi-arid saline floodplain. Environ. Model. Softw. 2016, 79, 167–183. [Google Scholar] [CrossRef]
- Graf, T.; Therrien, R. Variable-density groundwater flow and solute transport in porous media containing nonuniform discrete fractures. Adv. Water Resour. 2005, 28, 1351–1367. [Google Scholar] [CrossRef]
- Holzbecher, E. Modeling Density-Driven Flow in Porous Media; Springer: Heidelberg, Germany; New York, NY, USA, 1998; p. 286. [Google Scholar]
- Schincariol, R.A.; Schwartz, F.W.; Mendoza, C.A. Instabilities in variable density flows: Stability and sensitivity analyses for homogeneous and heterogeneous media. Water Resour. Res. 1997, 33, 31–41. [Google Scholar] [CrossRef]
- Oldenburg, C.M.; Pruess, K. Dispersive transport dynamics in a strongly coupled groundwater- brine flow system. Water Resour. Res. 1995, 31, 289–302. [Google Scholar] [CrossRef]
- Woods, J.A.; Teubner, M.D.; Simmons, C.T.; Narayan, K.A. Numerical error in groundwater flow and solute transport simulation. Water Resour. Res. 2003, 39, SBH101–SBH1012. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: Cham, Switzerland, 2006; Volume 3. [Google Scholar]
- Mao, X.; Prommer, H.; Barry, D.; Langevin, C.D.; Panteleit, B.; Li, L. Three-dimensional model for multi-component reactive transport with variable density groundwater flow. Environ. Model. Softw. 2006, 21, 615–628. [Google Scholar] [CrossRef]
- Simmons, C.T.; Narayan, K.A.; Woods, J.A.; Herczeg, A.L. Groundwater flow and solute transport at the Mourquong saline-water disposal basin, Murray Basin, southeastern Australia. Hydrogeol. J. 2002, 10, 278–295. [Google Scholar] [CrossRef]
- Jiao, J.; Post, V. Coastal Hydrogeology; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Cardenas, M.B.; Bennett, P.C.; Zamora, P.B.; Befus, K.M.; Rodolfo, R.S.; Cabria, H.B.; Lapus, M.R. Devastation of aquifers from tsunami-like storm surge by Supertyphoon Haiyan. Geophys. Res. Lett. 2015, 42, 2844–2851. [Google Scholar] [CrossRef]
- Liu, J.; Tokunaga, T. Future risks of tsunami-induced seawater intrusion into unconfined coastal aquifers: Insights from numerical simulations at Niijima Island, Japan. Water Resour. Res. 2019, 55, 10082–10104. [Google Scholar] [CrossRef]
- Elder, J. Transient convection in a porous medium. J. Fluid Mech. 1967, 27, 609–623. [Google Scholar] [CrossRef]
- Gvirtzman, H.; Garven, G.; Gvirtzman, G. Hydrogeological modeling of the saline hot springs at the Sea of Galilee, Israel. Water Resour. Res. 1997, 33, 913–926. [Google Scholar] [CrossRef]
- Oldenburg, C.M.; Pruess, K. Plume separation by transient thermohaline convection in porous media. Geophys. Res. Lett. 1999, 26, 2997–3000. [Google Scholar] [CrossRef]
- Myint, P.C.; Bestehorn, M.; Firoozabadi, A. Effect of permeability anisotropy on buoyancy-driven flow for CO2 sequestration in saline aquifers. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Emami-Meybodi, H.; Hassanzadeh, H.; Green, C.P.; Ennis-King, J. Convective dissolution of CO2 in saline aquifers: Progress in modeling and experiments. Int. J. Greenh. Gas Control 2015, 40, 238–266. [Google Scholar] [CrossRef]
- Kneafsey, T.J.; Pruess, K. Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transp. Porous Media 2010, 82, 123–139. [Google Scholar] [CrossRef]
- Simmons, C.T. Variable density groundwater flow: From current challenges to future possibilities. Hydrogeol. J. 2005, 13, 116–119. [Google Scholar] [CrossRef]
- Eeman, S.; Leijnse, A.; Raats, P.A.C.; van der Zee, S.E.A.T.M. Analysis of the thickness of a fresh water lens and of the transition zone between this lens and upwelling saline water. Adv. Water Resour. 2011, 34, 291–302. [Google Scholar] [CrossRef]
- Stofberg, S.F.; Oude Essink, G.H.P.; Pauw, P.S.; de Louw, P.G.B.; Leijnse, A.; van der Zee, S.E.A.T.M. Fresh Water Lens Persistence and Root Zone Salinization Hazard Under Temperate Climate. Water Resour. Manag. 2017, 31, 689–702. [Google Scholar] [CrossRef]
- Ciftci, E. Modelling coupled density-dependent flow and solute transport with the differential quadrature method. Geosci. J. 2017, 21, 807–817. [Google Scholar] [CrossRef]
- Boano, F.; Poggi, D.; Revelli, R.; Ridolfi, L. Gravity-driven water exchange between streams and hyporheic zones. Geophys. Res. Lett. 2009, 36, 146–158. [Google Scholar] [CrossRef]
- Ghyben, W. Nota in verband met de voorgenomen putboring nabij Amsterdam, Tijdschrift van Let Koninklijk Inst. Van Ing 1888. [Google Scholar]
- Herzberg, A. Die Wasserversorgung einiger Nordseebäder (The water supply on parts of the North Sea coast in Germany). J Gasbeleucht Wasserversorg. 1901, 44, 815–819. [Google Scholar]
- Bear, J.; Dagan, G. Some exact solutions of interface problems by means of the hodograph method. J. Geophys. Res. 1964, 69, 1563–1572. [Google Scholar] [CrossRef]
- Kacimov, A.; Obnosov, Y.V. Analytical solution for a sharp interface problem in sea water intrusion into a coastal aquifer. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2001, 457, 3023–3038. [Google Scholar] [CrossRef]
- Lu, C.; Chen, Y.; Luo, J. Boundary Condition Effects on Maximum Groundwater Withdrawal in Coastal Aquifers. Groundwater 2012, 50, 386–393. [Google Scholar] [CrossRef]
- Naji, A.; Cheng, A.-D.; Ouazar, D. Analytical stochastic solutions of saltwater/freshwater interface in coastal aquifers. Stoch. Hydrol. Hydraul. 1998, 12, 413–430. [Google Scholar] [CrossRef]
- Solórzano-Rivas, S.C.; Werner, A.D.; Irvine, D.J. Dispersion effects on the freshwater–seawater interface in subsea aquifers. Adv. Water Resour. 2019, 130, 184–197. [Google Scholar] [CrossRef]
- Guo, W.; Langevin, C.D. User’s Guide to SEAWAT.; A Computer Program for Simulation of Three-Dimensional Variable-Density Ground-Water Flow; United States Geological Survey: Tallahassee, FL, USA, 2002.
- Therrien, R.; McLaren, R.; Sudicky, E.; Panday, S. HydroGeoSphere: A Three-Dimensional Numerical Model Describing Fully-Integrated Subsurface and Surface Flow and Solute Transport; Groundwater Simulations Group, University of Waterloo: Waterloo, ON, Canada, 2010. [Google Scholar]
- Diersch, H.-J.G. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Voss, C.I. A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport. Water Resour. Investig. Rep. 1984, 84, 4369. [Google Scholar]
- Kolditz, O.; Bauer, S.; Bilke, L.; Böttcher, N.; Delfs, J.O.; Fischer, T.; Görke, U.J.; Kalbacher, T.; Kosakowski, G.; McDermott, C.I.; et al. OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. 2012, 67, 589–599. [Google Scholar] [CrossRef]
- Ataie-Ashtiani, B.; Simmons, C.T.; Werner, A.D. Influence of Boundary Condition Types on Unstable Density-Dependent Flow. Groundwater 2014, 52, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Post, V.E.A.; Prommer, H. Multicomponent reactive transport simulation of the Elder problem: Effects of chemical reactions on salt plume development. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Hamann, E.; Post, V.; Kohfahl, C.; Prommer, H.; Simmons, C.T. Numerical investigation of coupled density-driven flow and hydrogeochemical processes below playas. Water Resour. Res. 2015, 51, 9338–9352. [Google Scholar] [CrossRef]
- Vásquez, C.; Ortiz, C.; Suárez, F.; Muñoz, J.F. Modeling flow and reactive transport to explain mineral zoning in the Atacama salt flat aquifer, Chile. J. Hydrol. 2013, 490, 114–125. [Google Scholar] [CrossRef]
- Abdoulhalik, A.; Ahmed, A.A. Transience of seawater intrusion and retreat in response to incremental water-level variations. Hydrol. Process. 2018, 32, 2721–2733. [Google Scholar] [CrossRef]
- Alaghmand, S.; Brunner, P.; Graf, T.; Simmons, C. Implication of density-dependent flow on numerical modelling of SW-GW interactions. In Proceedings of the 8th International Congress on Environmental Modeling and Software (iEMSs), Toulouse, France, 10–14 July 2016. [Google Scholar]
- Liu, B.; Zhao, W.; Wen, Z.; Yang, Y.; Chang, X.; Yang, Q.; Meng, Y.; Liu, C. Mechanisms and feedbacks for evapotranspiration-induced salt accumulation and precipitation in an arid wetland of China. J. Hydrol. 2019, 568, 403–415. [Google Scholar] [CrossRef]
- de Louw, P.G.B.; Vandenbohede, A.; Werner, A.D.; Oude Essink, G.H.P. Natural saltwater upconing by preferential groundwater discharge through boils. J. Hydrol. 2013, 490, 74–87. [Google Scholar] [CrossRef]
- Morgan, L.K.; Werner, A.D.; Simmons, C.T. On the interpretation of coastal aquifer water level trends and water balances: A precautionary note. J. Hydrol. 2012, 470–471, 280–288. [Google Scholar] [CrossRef]
- Werner, A.D. Correction factor to account for dispersion in sharp-interface models of terrestrial freshwater lenses and active seawater intrusion. Adv. Water Resour. 2017, 102, 45–52. [Google Scholar] [CrossRef]
- Woods, J.A.; Carey, G.F. Upwelling and downwelling behavior in the Elder-Voss-Souza benchmark. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Van Reeuwijk, M.; Mathias, S.A.; Simmons, C.T.; Ward, J.D. Insights from a pseudospectral approach to the Elder problem. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Xie, Y.; Simmons, C.T.; Werner, A.D.; Diersch, H.-J.G. Prediction and uncertainty of free convection phenomena in porous media. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Harvey, J.; Wagner, B. Streams and Ground Waters, Chapter 1: Quantifying Hydrologic Interactions between Streams and Their Subsurface Hyporheic Zones; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Di Ciacca, A.; Leterme, B.; Laloy, E.; Jacques, D.; Vanderborght, J. Scale-dependent parameterization of groundwater–surface water interactions in a regional hydrogeological model. J. Hydrol. 2019, 576, 494–507. [Google Scholar] [CrossRef]
- van Genuchten, M.T. Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Brooks, R.H. Hydraulic Properties of Porous Media; Colorado State University: Fort Collins, CO, USA, 1965. [Google Scholar]
- Aquaveo. Groundwater Modelling System (GMS), 7.1; Aquaveo: Provo, UT, USA, 2011. [Google Scholar]
- Carsel, R.F.; Parrish, R.S. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 1988, 24, 755–769. [Google Scholar] [CrossRef]
- Doble, R.; Brunner, P.; McCallum, J.; Cook, P.G. An analysis of river bank slope and unsaturated flow effects on bank storage. Groundwater 2012, 50, 77–86. [Google Scholar] [CrossRef]
- Panday, S.; Huyakorn, P.S.; Robertson, J.B.; McGurk, B. A density-dependent flow and transport analysis of the effects of groundwater development in a freshwater lens of limited areal extent: The Geneva area (Florida, USA) case study. J. Contam. Hydrol. 1993, 12, 329–354. [Google Scholar] [CrossRef]
- Torres Martínez, J.A.; Mora, A.; Ramos Leal, J.A.; Morán Ramírez, J.; Arango Galván, C.; Mahlknecht, J. Constraining a density-dependent flow model with the transient electromagnetic method in a coastal aquifer in Mexico to assess seawater intrusion. Hydrogeol. J. 2019, 27, 2955–2972. [Google Scholar] [CrossRef]
- Werner, A.D.; Laattoe, T. Terrestrial freshwater lenses in stable riverine settings: Occurrence and controlling factors. Water Resour. Res. 2016, 52, 3654–3662. [Google Scholar] [CrossRef]
- Yabusaki, S.B.; Myers-Pigg, A.N.; Ward, N.D.; Waichler, S.R.; Sengupta, A.; Hou, Z.; Chen, X.; Fang, Y.; Duan, Z.; Serkowski, J.A. Floodplain inundation and salinization from a recently restored first-order tidal stream. Water Resour. Res. 2020, 56, e2019WR026850. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Q.; Ren, D.; Xu, X.; Xiong, Y.; Huang, G. Soil evaporation and its impact on salt accumulation in different landscapes under freeze–thaw conditions in an arid seasonal frozen region. Vadose Zone J. 2021, 20, e20098. [Google Scholar] [CrossRef]
- Moeck, C.; Gurdak, J.J.; Schirmer, M. Global assessment of steady and transient groundwater recharge rates. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 4–13 April 2018; p. 1486. [Google Scholar]
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. Int. J. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, M.; Chen, Z. Identification and estimation of solute storage and release in karst water systems, South China. Int. J. Environ. Res. Public Health 2020, 17, 7219. [Google Scholar] [CrossRef] [PubMed]
- Costall, A.; Harris, B.; Teo, B.; Schaa, R.; Wagner, F.; Pigois, J. Groundwater throughflow and seawater intrusion in high quality coastal aquifers. Sci. Rep. 2020, 10, 9866. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.N.; Kimsal, C.; Frederiks, R.S.; Paldor, A.; McQuiggan, R.; Michael, H.A. Groundwater pumping causes salinization of coastal streams due to baseflow depletion: Analytical framework and application to Savannah River, GA. J. Hydrol. 2022, 604, 127238. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhai, Y.; Teng, Y.; Wang, G.; Du, Q.; Wang, J.; Yang, G. Water supply safety of riverbank filtration wells under the impact of surface water-groundwater interaction: Evidence from long-term field pumping tests. Sci. Total Environ. 2020, 711, 135141. [Google Scholar] [CrossRef]
Hydrological Driver | Scenarios |
---|---|
Gaining river hydraulic gradients | 0.1%, 0.5%, 0.7% and 1% |
Losing river hydraulic gradients | 0.1%, 0.2%, 0.4%, 0.5%, 0.6% and 1% |
ET rates | 2 , 5 , 7 and 10 |
Surface recharge rates | 10 , 25 , 50 , 75 and 100 |
Pumping rates | 0.02 , 0.03 , 0.05 , 0.1 and 0.15 |
Salinity contrast ratios (GW/SW) | 5, 10, 50, 100 and 150 times |
Model Parameters | Value | Units |
---|---|---|
Hydraulic conductivity | 7.128 | m d−1 |
Porosity | 0.43 | |
Residual water content | 0.03 | |
van Genuchten alpha | 14.5 | m−1 |
van Genuchten beta | 2.68 | |
Longitudinal dispersivity | 1 | m |
Transverse dispersivity | 0.5 | m |
Reference fluid density | 1000 | Kg m−3 |
Relative concentration | 1025 | |
Free-solution diffusion coefficient | 8.64 × 10−5 | m2 d−1 |
Evaporation extinction depth defined by quadratic decay EDF | 1 | m |
Root depth | 0.2 | m |
Evaporation limiting saturation for Grass (min and max) | 0.25 and 0.9 | |
Transpiration extinction depth defined by quadratic decay RDF | 0.5 | m |
Leaf area index (LAI) | 0.5 | m2 m−2 |
Transpiration fitting parameter (C1, C2 and C3) | 0.5, 0 and 1 | |
Transpiration limiting saturation parameters (wilting point, field capacity, oxic limit and anoxid limit) | 0.07, 0.1, 0.8 and 0.95 | |
Rill storage height for river and floodplain | 0.001 and 0.01 | m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doulabian, S.; Shadmehri Toosi, A.; Alaghmand, S. Quantifying the Impacts of Density-Dependent Flow on Surface Water–Groundwater Interaction in a Riparian Setup. Atmosphere 2024, 15, 795. https://doi.org/10.3390/atmos15070795
Doulabian S, Shadmehri Toosi A, Alaghmand S. Quantifying the Impacts of Density-Dependent Flow on Surface Water–Groundwater Interaction in a Riparian Setup. Atmosphere. 2024; 15(7):795. https://doi.org/10.3390/atmos15070795
Chicago/Turabian StyleDoulabian, Shahab, Amirhossein Shadmehri Toosi, and Sina Alaghmand. 2024. "Quantifying the Impacts of Density-Dependent Flow on Surface Water–Groundwater Interaction in a Riparian Setup" Atmosphere 15, no. 7: 795. https://doi.org/10.3390/atmos15070795
APA StyleDoulabian, S., Shadmehri Toosi, A., & Alaghmand, S. (2024). Quantifying the Impacts of Density-Dependent Flow on Surface Water–Groundwater Interaction in a Riparian Setup. Atmosphere, 15(7), 795. https://doi.org/10.3390/atmos15070795