Analyzing the Improvement Effect of the k-Distribution Method on the Radiation Parameterization for WRF Model
Abstract
:1. Introduction
2. Data and Methods
2.1. Existing k-Distribution (OLD) Method
2.2. Improved k-Distribution (NEW) Method
2.3. WRF Model
2.3.1. Reanalysis Data
2.3.2. Case Selection
3. Results
3.1. Comparison of Radiative Flux and Heating (Cooling) Rates Calculated Using the OLD and NEW k-Distribution Methods
3.1.1. Shortwave Radiation
3.1.2. Longwave Radiation
3.2. Sensitivity of the WRF Model
3.2.1. Clear Day
Shortwave Radiation
Longwave Radiation
Air Temperature at An Altitude of 2 m from the Surface
3.2.2. Cloudy Day
Shortwave and Longwave Radiations
Air Temperature at An Altitude of 2 m
Precipitation
3.3. Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2021; Volume 145. [Google Scholar] [CrossRef]
- Lashof, D.A.; Ahuja, D.R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529–531. [Google Scholar] [CrossRef]
- Jee, J.-B.; Kim, S. Sensitivity Study on High-Resolution WRF Precipitation Forecast for a Heavy Rainfall Event. Atmosphere 2017, 8, 96. [Google Scholar] [CrossRef]
- Jee, J.-B.; Kim, S. Sensitivity Study on High-Resolution Numerical Modeling of Static Topographic Data. Atmosphere 2016, 7, 86. [Google Scholar] [CrossRef]
- Mierzwiak, M.; Kroszczyński, K. Impact of Domain Nesting on High-Resolution Forecasts of Solar Conditions in Central and Eastern Europe. Energies 2023, 16, 4969. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, J.; Zhang, S.; Shao, W.; Zhang, L. Research on Climate Change in Qinghai Lake Basin Based on WRF and CMIP6. Remote Sens. 2023, 15, 4379. [Google Scholar] [CrossRef]
- Bai, T.; Fan, L.; Song, G.; Song, H.; Ru, X.; Wang, Y.; Zhang, H.; Min, R.; Wang, W. Effects of Land Use/Cover and Meteorological Changes on Regional Climate under Different SSP-RCP Scenarios: A Case Study in Zhengzhou, China. Remote Sens. 2023, 15, 2601. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s global energy budget. Bull. Am. Met. Soc. 2009, 90, 311–323. [Google Scholar] [CrossRef]
- Nordhaus, W.D. Managing the Global Commons: The Economics of Climate Change; MIT Press: Cambridge, MA, USA, 1994; Volume 31, p. 213. [Google Scholar]
- Pielke, R.A.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2002, 360, 1705–1719. [Google Scholar] [CrossRef]
- Gaffin, S.R.; Rosenzweig, C.; Parshall, L.; Beattie, D.; Berghage, R.; O’Keeffe, G.; Braman, D. Energy balance modeling applied to a comparison of green and white roof cooling efficiency. In Proceedings of the 3rd Annual Greening Rooftops for Sustainable Cities Conference, Washington, DC, USA, 4–6 May 2005; pp. 583–597. [Google Scholar]
- Sheffield, P.E.; Landrigan, P.J. Global climate change and children’s health: Threats and strategies for prevention. Environ. Health Perspect. 2011, 119, 291–298. [Google Scholar] [CrossRef]
- Coutts, A.M.; Harris, R. VCCCAR Report: A Multi-Scale Assessment of Urban Heating in Melbourne during an Extreme Heat Event and Policy Approaches for Adaptation; Victorian Centre for Climate Change and Adaptation Research: Melbourne, Australia, 2012; p. 64. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Notes; No. NCAR/TN-475+STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008; 113p. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Collins, W.D.; Rasch, P.J.; Boville, B.A.; McCaa, J.; Williamson, D.A.; Kiehl, J.T.; Briegleb, B.P.; Bitz, C.; Lin, S.-J.; Zhang, M.; et al. Description of the NCAR Community Atmosphere Model (CAM 3.0); NCAR Technical Notes; (NCAR/TN-464+STR); University Corporation for Atmospheric Research: Boulder, CO, USA, 2004; Volume 226, pp. 1326–1334. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, 1–8. [Google Scholar] [CrossRef]
- Gu, Y.; Liou, N.; Ou, S.; Fovell, R. Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res. Atmos. 2011, 116, 1–14. [Google Scholar] [CrossRef]
- Fu, Q.; Liou, K.N. On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci. 1992, 49, 2139–2156. [Google Scholar] [CrossRef]
- Fels, S.B.; Schwarzkopf, D.M. The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci. 1975, 32, 1475–1488. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Zempila, M.-M.; Giannaros, T.M.; Bais, A.; Melas, D.; Kazantzidis, A. Evaluation of WRF shortwave radiation parameterizations in predicting Global Horizontal Irradiance in Greece. Renew. Energy 2016, 86, 831–840. [Google Scholar] [CrossRef]
- Kong, X.; Wang, A.; Bi, X.; Sun, B.; Wei, J. The hourly precipitation frequencies in the tropical-belt version of WRF: Sensitivity to cumulus parameterization and radiation schemes. J. Clim. 2022, 35, 285–304. [Google Scholar] [CrossRef]
- Chou, M.-D.; Suarez, M.J. A Solar Radiation Parameterization for Atmospheric Studies; NASA Technical Report Series on Global Modeling and Data Assimilation (NASA/TM-1999-104606); NASA: Washington, DC, USA, 1999; Volume 15, p. 38. [Google Scholar]
- Chou, M.-D.; Suarez, M.J.; Liang, X.J.; Yan, M.M.H.; Cote, C. A Thermal Infrared Radiation Parameterization for Atmospheric Studies; NASA Technical Report Series on Global Modeling and Data Assimilation (NASA/TM-2001-104606); NASA: Washington, DC, USA, 2001; Volume 19, p. 55. [Google Scholar]
- Chou, M.-D.; Yu, C.-C.; Lee, W.-L.; Shiu, C.-J.; Lee, K.-T.; Zo, I.-S.; Jee, J.-B.; Kim, B.-Y. A new k-distribution scheme for clear-sky radiative transfer calculations in Earth’s atmosphere. Part I: Thermal Infrared (longwave) radiation. J. Atmos. Sci. 2020, 77, 2237–2256. [Google Scholar] [CrossRef]
- Chou, M.-D.; Lee, K.-T.; Zo, I.-S.; Lee, W.-L.; Shiu, C.-J.; Jee, J.-B. A new k-distribution scheme for clear-sky radiative transfer calculations in Earth’s atmosphere. Part II: Solar (shortwave) heating due to H2O and CO2. J. Atmos. Sci. 2021, 78, 2657–2675. [Google Scholar] [CrossRef]
- Chou, M.-D.; Kouvaris, L. Monochromatic calculations of atmospheric radiative transfer due to molecular line absorption. J. Geophys. Res. Atmos. 1986, 91, 4047–4055. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Chris Benner, D.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spect. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef]
- Tao, W.-K.; Simpson, J.; Lang, S.; McCumber, M.; Adler, R.; Lang, S. An algorithm to estimate the heating budget from vertical hydrometeor profiles. J. Appl. Met. Climatol. 1990, 29, 1232–1244. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peuey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gossart, A.; Helsen, S.; Lenaerts, J.T.M.; Vanden Broucke, S.; van Lipzig, N.P.M.; Souverijns, N. An Evaluation of Surface Climatology in State-of-the-Art Reanalyses over the Antarctic Ice Sheet. J. Clim. 2019, 32, 6899–6915. [Google Scholar] [CrossRef]
- NOAA-S/T-76-1562; U.S. Standard Atmosphere 1976. NASA: Washington, DC, USA, 1976; p. 229.
- Chou, M.-D.; Lee, K.T. Parameterizations for the absorption of solar radiation by water vapor and ozone. J. Atmos. Sci. 1996, 53, 1203–1208. [Google Scholar] [CrossRef]
Parameter | Configuration | |
---|---|---|
NWP version | WRF V4.3 | |
Horizontal grid spacing | 3 km | |
Dimension | 179 × 216 × 70 | |
Integral time step (s) | 3 | |
Vertical layer | 70 Sigma layers/10 hPa OR 50 hPa | |
Initial condition | ECMWF ERA5 reanalysis hourly data (0.25° × 0.25°) | |
Microphysics | Goddard 4-ice | |
Planetary boundary layer | YSU PBL | |
Land-surface Model | 5-layer thermal diffusion | |
Experiment | OLD | NEW |
Longwave radiation scheme | New Goddard (existing k-distribution method) | Improved k-distribution method |
Shortwave radiation scheme | New Goddard (existing k-distribution method) | Improved k-distribution method |
WRF Top Level | OLD | NEW | NEW-OLD | |
---|---|---|---|---|
Seoul | 10 hPa | 285.29 ± 0.70 | 285.63 ± 0.75 | 0.34 |
50 hPa | 285.37 ± 0.72 | 285.67 ± 0.76 | 0.29 | |
West Sea | 10 hPa | 285.57 ± 0.13 | 285.56 ± 0.11 | −0.01 |
50 hPa | 285.64 ± 0.11 | 285.60 ± 0.09 | −0.04 | |
Gangwon-do | 10 hPa | 281.75 ± 0.53 | 281.86 ± 0.52 | 0.11 |
50 hPa | 281.78 ± 0.53 | 281.88 ± 0.53 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.-J.; Jee, J.-B.; Lee, K.-T.; Zo, I.-S. Analyzing the Improvement Effect of the k-Distribution Method on the Radiation Parameterization for WRF Model. Atmosphere 2024, 15, 796. https://doi.org/10.3390/atmos15070796
Choi S-J, Jee J-B, Lee K-T, Zo I-S. Analyzing the Improvement Effect of the k-Distribution Method on the Radiation Parameterization for WRF Model. Atmosphere. 2024; 15(7):796. https://doi.org/10.3390/atmos15070796
Chicago/Turabian StyleChoi, Sung-Jin, Joon-Bum Jee, Kyu-Tae Lee, and Il-Sung Zo. 2024. "Analyzing the Improvement Effect of the k-Distribution Method on the Radiation Parameterization for WRF Model" Atmosphere 15, no. 7: 796. https://doi.org/10.3390/atmos15070796
APA StyleChoi, S. -J., Jee, J. -B., Lee, K. -T., & Zo, I. -S. (2024). Analyzing the Improvement Effect of the k-Distribution Method on the Radiation Parameterization for WRF Model. Atmosphere, 15(7), 796. https://doi.org/10.3390/atmos15070796