Developmental Ambient Air Pollution Exposure in Mice Alters Fronto-Striatal Neurotransmitter System Function: Male-Biased Serotonergic Vulnerability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Exposure
2.3. Neurotransmitter Analyses
2.4. Serum Cytokines and Corticosterone
2.5. Statistical Analyses
3. Results
3.1. Trajectory of Brain Fronto-Striatal Neurotransmitter Functions
3.2. Interactions of Fronto-Striatal Neurotransmitter Systems
3.3. Trajectory of Serum Cytokine and Changes
3.4. Interactions of Corticosterone with Frontal Cortex Neurotransmitters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, X.; Zhang, S.; Lin, Q.; Wu, Y.; Yang, Y.; Yu, H.; Huang, S.; Luo, W.; Wang, X.; Lin, H.; et al. Prenatal exposure to air pollution and neurodevelopmental delay in children: A birth cohort study in Foshan, China. Sci. Total Environ. 2022, 816, 151658. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.M.; Wilson, A.; Hsu, H.L.; Jamal, H.; Mathews, N.; Kloog, I.; Schwartz, J.; Bellinger, D.C.; Xhani, N.; Wright, R.O.; et al. Prenatal ambient air pollutant mixture exposure and neurodevelopment in urban children in the Northeastern United States. Environ. Res. 2023, 233, 116394. [Google Scholar] [CrossRef]
- Loftus, C.T.; Ni, Y.; Szpiro, A.A.; Hazlehurst, M.F.; Tylavsky, F.A.; Bush, N.R.; Sathyanarayana, S.; Carroll, K.N.; Young, M.; Karr, C.J.; et al. Exposure to ambient air pollution and early childhood behavior: A longitudinal cohort study. Environ. Res. 2020, 183, 109075. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.S.; Bansal, R.; Sawardekar, S.; Nati, C.; Elgabalawy, E.R.; Hoepner, L.A.; Garcia, W.; Hao, X.; Margolis, A.; Perera, F.; et al. Prenatal exposure to air pollution is associated with altered brain structure, function, and metabolism in childhood. J. Child Psychol. Psychiatry Allied Discip. 2022, 63, 1316–1331. [Google Scholar] [CrossRef] [PubMed]
- Bos, B.; Barratt, B.; Batalle, D.; Gale-Grant, O.; Hughes, E.J.; Beevers, S.; Cordero-Grande, L.; Price, A.N.; Hutter, J.; Hajnal, J.V.; et al. Prenatal exposure to air pollution is associated with structural changes in the neonatal brain. Environ. Int. 2023, 174, 107921. [Google Scholar] [CrossRef] [PubMed]
- Morgan, Z.E.M.; Bailey, M.J.; Trifonova, D.I.; Naik, N.C.; Patterson, W.B.; Lurmann, F.W.; Chang, H.H.; Peterson, B.S.; Goran, M.I.; Alderete, T.L. Prenatal exposure to ambient air pollution is associated with neurodevelopmental outcomes at 2 years of age. Environ. Health 2023, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Ha, S. Air pollution and neurological development in children. Dev. Med. Child. Neurol. 2021, 63, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G.; Cole, T.B.; Dao, K.; Chang, Y.C.; Coburn, J.; Garrick, J.M. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol. Ther. 2020, 210, 107523. [Google Scholar] [CrossRef] [PubMed]
- Dutheil, F.; Comptour, A.; Morlon, R.; Mermillod, M.; Pereira, B.; Baker, J.S.; Charkhabi, M.; Clinchamps, M.; Bourdel, N. Autism spectrum disorder and air pollution: A systematic review and meta-analysis. Environ. Pollut. 2021, 278, 116856. [Google Scholar] [CrossRef]
- Imbriani, G.; Panico, A.; Grassi, T.; Idolo, A.; Serio, F.; Bagordo, F.; De Filippis, G.; De Giorgi, D.; Antonucci, G.; Piscitelli, P.; et al. Early-Life Exposure to Environmental Air Pollution and Autism Spectrum Disorder: A Review of Available Evidence. Int. J. Environ. Res. Public Health 2021, 18, 1204. [Google Scholar] [CrossRef]
- Thygesen, M.; Holst, G.J.; Hansen, B.; Geels, C.; Kalkbrenner, A.; Schendel, D.; Brandt, J.; Pedersen, C.B.; Dalsgaard, S. Exposure to air pollution in early childhood and the association with Attention-Deficit Hyperactivity Disorder. Environ. Res. 2020, 183, 108930. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; He, T.; Wang, F.; Liu, W. Association of prenatal and postnatal exposure to air pollution with clinically diagnosed attention deficit hyperactivity disorder: A systematic review. Front. Public Health 2024, 12, 1396251. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Liu, L.; Wei, N.; Li, X.; Liu, J.; Yuan, J.; Yan, S.; Sun, X.; Mei, L.; Liang, Y.; et al. Short-term exposure to air pollution is an emerging but neglected risk factor for schizophrenia: A systematic review and meta-analysis. Sci. Total Environ. 2022, 2022, 158823. [Google Scholar] [CrossRef] [PubMed]
- Cory-Slechta, D.A.; Sobolewski, M.; Oberdörster, G. Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases. Atmosphere 2020, 11, 1098. [Google Scholar] [CrossRef]
- Donev, R.; Gantert, D.; Alawam, K.; Edworthy, A.; Hassler, F.; Meyer-Lindenberg, A.; Dressing, H.; Thome, J. Comorbidity of schizophrenia and adult attention-deficit hyperactivity disorder. World J. Biol. Psychiatry 2011, 12 (Suppl. 1), 52–56. [Google Scholar] [CrossRef] [PubMed]
- Antshel, K.M.; Zhang-James, Y.; Faraone, S.V. The comorbidity of ADHD and autism spectrum disorder. Expert Rev. Neurother. 2013, 13, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Cory-Slechta, D.A.; Merrill, A.; Sobolewski, M. Air Pollution–Related Neurotoxicity Across the Life Span. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 143–163. [Google Scholar] [CrossRef] [PubMed]
- Vanicek, T.; Kutzelnigg, A.; Philippe, C.; Sigurdardottir, H.L.; James, G.M.; Hahn, A.; Kranz, G.S.; Hoflich, A.; Kautzky, A.; Traub-Weidinger, T.; et al. Altered interregional molecular associations of the serotonin transporter in attention deficit/hyperactivity disorder assessed with PET. Hum. Brain Mapp. 2017, 38, 792–802. [Google Scholar] [CrossRef]
- Reale, M.; Costantini, E.; Greig, N.H. Cytokine Imbalance in Schizophrenia. From Research to Clinic: Potential Implications for Treatment. Front. Psychiatry 2021, 12, 536257. [Google Scholar] [CrossRef]
- Misiak, B.; Wójta-Kempa, M.; Samochowiec, J.; Schiweck, C.; Aichholzer, M.; Reif, A.; Samochowiec, A.; Stańczykiewicz, B. Peripheral blood inflammatory markers in patients with attention deficit/hyperactivity disorder (ADHD): A systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2022, 118, 110581. [Google Scholar] [CrossRef]
- McClain, M.B.; Hasty Mills, A.M.; Murphy, L.E. Inattention and hyperactivity/impulsivity among children with attention-deficit/hyperactivity-disorder, autism spectrum disorder, and intellectual disability. Res. Dev. Disabil. 2017, 70, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.Y.; Jung, S.; Bang, M.; Choi, T.K.; Park, C.I.; Lee, S.H. White matter correlates of impulsivity in frontal lobe and their associations with treatment response in first-episode schizophrenia. Neurosci. Lett. 2022, 767, 136309. [Google Scholar] [CrossRef] [PubMed]
- Clancy, B.; Finlay, B.L.; Darlington, R.B.; Anand, K.J. Extrapolating brain development from experimental species to humans. Neurotoxicology 2007, 28, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; Liu, X.; Pelkowski, S.; Palmer, B.; Conrad, K.; Oberdorster, G.; Weston, D.; Mayer-Proschel, M.; Cory-Slechta, D.A. Early postnatal exposure to ultrafine particulate matter air pollution: Persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice. Environ. Health Perspect. 2014, 122, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; Oberdorster, G.; Morris-Schaffer, K.; Wong, C.; Klocke, C.; Sobolewski, M.; Conrad, K.; Mayer-Proschel, M.; Cory-Slechta, D.A. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 2017, 59, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; Conrad, K.; Oberdorster, G.; Johnston, C.J.; Sleezer, B.; Cory-Slechta, D.A. Developmental exposure to concentrated ambient particles and preference for immediate reward in mice. Environ. Health Perspect. 2013, 121, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Cory-Slechta, D.A.; Allen, J.L.; Conrad, K.; Marvin, E.; Sobolewski, M. Developmental exposure to low level ambient ultrafine particle air pollution and cognitive dysfunction. Neurotoxicology 2018, 69, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Ferreira, H.; Martins, J.; Gonçalves, J.; Castelo-Branco, M. Male sex bias in early and late onset neurodevelopmental disorders: Shared aspects and differences in Autism Spectrum Disorder, Attention Deficit/hyperactivity Disorder, and Schizophrenia. Neurosci. Biobehav. Rev. 2022, 135, 104577. [Google Scholar] [CrossRef]
- Lei, X.; Han, Z.; Chen, C.; Bai, L.; Xue, G.; Dong, Q. Sex Differences in Fiber Connection between the Striatum and Subcortical and Cortical Regions. Front. Comput. Neurosci. 2016, 10, 100. [Google Scholar] [CrossRef]
- Haber, S.N. Corticostriatal circuitry. Dialogues Clin. Neurosci. 2016, 18, 7–21. [Google Scholar] [CrossRef]
- Yan, Z.; Rein, B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: Pathophysiological implications. Mol. Psychiatry 2022, 27, 445–465. [Google Scholar] [CrossRef] [PubMed]
- Averbeck, B.; O’Doherty, J.P. Reinforcement-learning in fronto-striatal circuits. Neuropsychopharmacology 2022, 47, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Morris, L.S.; Kundu, P.; Dowell, N.; Mechelmans, D.J.; Favre, P.; Irvine, M.A.; Robbins, T.W.; Daw, N.; Bullmore, E.T.; Harrison, N.A.; et al. Fronto-striatal organization: Defining functional and microstructural substrates of behavioural flexibility. Cortex 2016, 74, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Langen, M.; Leemans, A.; Johnston, P.; Ecker, C.; Daly, E.; Murphy, C.M.; Dell’acqua, F.; Durston, S.; Murphy, D.G. Fronto-striatal circuitry and inhibitory control in autism: Findings from diffusion tensor imaging tractography. Cortex 2012, 48, 183–193. [Google Scholar] [CrossRef]
- Criaud, M.; Wulff, M.; Alegria, A.A.; Barker, G.J.; Giampietro, V.; Rubia, K. Increased left inferior fronto-striatal activation during error monitoring after fMRI neurofeedback of right inferior frontal cortex in adolescents with attention deficit hyperactivity disorder. NeuroImage Clin. 2020, 27, 102311. [Google Scholar] [CrossRef] [PubMed]
- Arnsten, A.F.; Rubia, K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: Disruptions in neurodevelopmental psychiatric disorders. J. Am. Acad. Child. Adolesc. Psychiatry 2012, 51, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Hollestein, V.; Buitelaar, J.K.; Brandeis, D.; Banaschewski, T.; Kaiser, A.; Hohmann, S.; Oranje, B.; Gooskens, B.; Durston, S.; Williams, S.C.R.; et al. Developmental changes in fronto-striatal glutamate and their association with functioning during inhibitory control in autism spectrum disorder and obsessive compulsive disorder. NeuroImage Clin. 2021, 30, 102622. [Google Scholar] [CrossRef]
- Naaijen, J.; Zwiers, M.P.; Amiri, H.; Williams, S.C.R.; Durston, S.; Oranje, B.; Brandeis, D.; Boecker-Schlier, R.; Ruf, M.; Wolf, I.; et al. Fronto-Striatal Glutamate in Autism Spectrum Disorder and Obsessive Compulsive Disorder. Neuropsychopharmacology 2017, 42, 2456–2465. [Google Scholar] [CrossRef] [PubMed]
- Mamiya, P.C.; Richards, T.L.; Edden, R.A.E.; Lee, A.K.C.; Stein, M.A.; Kuhl, P.K. Reduced Glx and GABA Inductions in the Anterior Cingulate Cortex and Caudate Nucleus Are Related to Impaired Control of Attention in Attention-Deficit/Hyperactivity Disorder. Int. J. Mol. Sci. 2022, 23, 4677. [Google Scholar] [CrossRef]
- Bauer, J.; Werner, A.; Kohl, W.; Kugel, H.; Shushakova, A.; Pedersen, A.; Ohrmann, P. Hyperactivity and impulsivity in adult attention-deficit/hyperactivity disorder is related to glutamatergic dysfunction in the anterior cingulate cortex. World J. Biol. Psychiatry 2018, 19, 538–546. [Google Scholar] [CrossRef]
- Snowden, A.W.; Buhusi, C.V. Neural Correlates of Interval Timing Deficits in Schizophrenia. Front. Hum. Neurosci. 2019, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Al-Otaish, H.; Al-Ayadhi, L.; Bjorklund, G.; Chirumbolo, S.; Urbina, M.A.; El-Ansary, A. Relationship between absolute and relative ratios of glutamate, glutamine and GABA and severity of autism spectrum disorder. Metab. Brain Dis. 2018, 33, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Uno, Y.; Coyle, J.T. Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 2019, 73, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Malik, J.A.; Yaseen, Z.; Thotapalli, L.; Ahmed, S.; Shaikh, M.F.; Anwar, S. Understanding translational research in schizophrenia: A novel insight into animal models. Mol. Biol. Rep. 2023, 50, 3767–3785. [Google Scholar] [CrossRef] [PubMed]
- Kosillo, P.; Bateup, H.S. Dopaminergic Dysregulation in Syndromic Autism Spectrum Disorders: Insights From Genetic Mouse Models. Front. Neural Circuits 2021, 15, 700968. [Google Scholar] [CrossRef] [PubMed]
- Quintero, J.; Gutiérrez-Casares, J.R.; Álamo, C. Molecular Characterisation of the Mechanism of Action of Stimulant Drugs Lisdexamfetamine and Methylphenidate on ADHD Neurobiology: A Review. Neurol. Ther. 2022, 11, 1489–1517. [Google Scholar] [CrossRef] [PubMed]
- Pavăl, D.; Micluția, I.V. The Dopamine Hypothesis of Autism Spectrum Disorder Revisited: Current Status and Future Prospects. Dev. Neurosci. 2021, 43, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Murayama, C.; Iwabuchi, T.; Kato, Y.; Yokokura, M.; Harada, T.; Goto, T.; Tamayama, T.; Kameno, Y.; Wakuda, T.; Kuwabara, H.; et al. Extrastriatal dopamine D2/3 receptor binding, functional connectivity, and autism socio-communicational deficits: A PET and fMRI study. Mol. Psychiatry 2022, 27, 2106–2113. [Google Scholar] [CrossRef] [PubMed]
- Frankle, W.G.; Himes, M.; Mason, N.S.; Mathis, C.A.; Narendran, R. Prefrontal and Striatal Dopamine Release Are Inversely Correlated in Schizophrenia. Biol. Psychiatry 2022, 92, 791–799. [Google Scholar] [CrossRef]
- Eggers, A.E. A serotonin hypothesis of schizophrenia. Med. Hypotheses 2013, 80, 791–794. [Google Scholar] [CrossRef]
- Nakamura, K.; Sekine, Y.; Ouchi, Y.; Tsujii, M.; Yoshikawa, E.; Futatsubashi, M.; Tsuchiya, K.J.; Sugihara, G.; Iwata, Y.; Suzuki, K.; et al. Brain Serotonin and Dopamine Transporter Bindings in Adults With High-Functioning Autism. Arch. Gen. Psychiatry 2010, 67, 59–68. [Google Scholar] [CrossRef]
- Allen, J.L.; Liu, X.; Weston, D.; Prince, L.; Oberdorster, G.; Finkelstein, J.N.; Johnston, C.J.; Cory-Slechta, D.A. Developmental exposure to concentrated ambient ultrafine particulate matter air pollution in mice results in persistent and sex-dependent behavioral neurotoxicity and glial activation. Toxicol. Sci. 2014, 140, 160–178. [Google Scholar] [CrossRef]
- Morris-Schaffer, K.; Sobolewski, M.; Welle, K.; Conrad, K.; Yee, M.; O’Reilly, M.A.; Cory-Slechta, D.A. Cognitive flexibility deficits in male mice exposed to neonatal hyperoxia followed by concentrated ambient ultrafine particles. Neurotoxicol. Teratol. 2018, 70, 51–59. [Google Scholar] [CrossRef]
- Long, J.; Dang, H.; Su, W.; Moneruzzaman, M.; Zhang, H. Interactions between circulating inflammatory factors and autism spectrum disorder: A bidirectional Mendelian randomization study in European population. Front. Immunol. 2024, 15, 1370276. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.; Mirzaei, Y.; Mer, A.H.; Mohammad-Rezaei, M.; Shafaghat, Z.; Fattahi, S.; Azadegan-Dehkordi, F.; Abdollahpour-Alitappeh, M.; Bagheri, N. The Role of Innate and Adaptive Immune System in the Pathogenesis of Schizophrenia. Iran. J. Allergy Asthma Immunol. 2024, 23, 1–28. [Google Scholar] [CrossRef]
- Vázquez-González, D.; Carreón-Trujillo, S.; Alvarez-Arellano, L.; Abarca-Merlin, D.M.; Domínguez-López, P.; Salazar-García, M.; Corona, J.C. A Potential Role for Neuroinflammation in ADHD. Adv. Exp. Med. Biol. 2023, 1411, 327–356. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.N.; Sternberg, E.M. Glucocorticoid regulation of inflammation and its functional correlates: From HPA axis to glucocorticoid receptor dysfunction. Ann. N. Y. Acad. Sci. 2012, 1261, 55–63. [Google Scholar] [CrossRef]
- He, S.; Klevebro, S.; Baldanzi, G.; Pershagen, G.; Lundberg, B.; Eneroth, K.; Hedman, A.M.; Andolf, E.; Almqvist, C.; Bottai, M.; et al. Ambient air pollution and inflammation-related proteins during early childhood. Environ. Res. 2022, 215, 114364. [Google Scholar] [CrossRef]
- Thomson, E.M. Air Pollution, Stress, and Allostatic Load: Linking Systemic and Central Nervous System Impacts. J. Alzheimers Dis. 2019, 69, 597–614. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Arroyo, I.; Lopez-Griego, L.; Morales-Montor, J. The role of cytokines in the regulation of neurotransmission. Neuroimmunomodulation 2009, 16, 1–12. [Google Scholar] [CrossRef]
- McAfoose, J.; Baune, B.T. Evidence for a cytokine model of cognitive function. Neurosci. Biobehav. Rev. 2009, 33, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Sobolewski, M.; Anderson, T.; Conrad, K.; Marvin, E.; Klocke, C.; Morris-Schaffer, K.; Allen, J.L.; Cory-Slechta, D.A. Developmental exposures to ultrafine particle air pollution reduces early testosterone levels and adult male social novelty preference: Risk for children’s sex-biased neurobehavioral disorders. Neurotoxicology 2018, 68, 203–211. [Google Scholar] [CrossRef]
- Allen, J.L.; Liu, X.; Weston, D.; Conrad, K.; Oberdorster, G.; Cory-Slechta, D.A. Consequences of developmental exposure to concentrated ambient ultrafine particle air pollution combined with the adult paraquat and maneb model of the Parkinson’s disease phenotype in male mice. Neurotoxicology 2014, 41, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.M.; Malec, P.A.; Mabrouk, O.S.; Ro, J.; Dus, M.; Kennedy, R.T. Benzoyl chloride derivatization with liquid chromatography-mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J. Chromatogr. A 2016, 1446, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Bernardina Dalla, M.D.; Ayala, C.O.; Cristina de Abreu Quintela Castro, F.; Neto, F.K.; Zanirati, G.; Cañon-Montañez, W.; Mattiello, R. Environmental pollution and attention deficit hyperactivity disorder: A meta-analysis of cohort studies. Environ. Pollut. 2022, 315, 120351. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ding, L.; Qu, G.; Guo, X.; Liang, M.; Ma, S.; Sun, Y. Particulate matter exposure during pregnancy and infancy and risks of autism spectrum disorder in children: A systematic review and meta-analysis. Sci. Total Environ. 2023, 855, 158830. [Google Scholar] [CrossRef] [PubMed]
- Lopatina, O.L.; Malinovskaya, N.A.; Komleva, Y.K.; Gorina, Y.V.; Shuvaev, A.N.; Olovyannikova, R.Y.; Belozor, O.S.; Belova, O.A.; Higashida, H.; Salmina, A.B. Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev. Neurosci. 2019, 30, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Jaenisch, R.; Sur, M. The role of GABAergic signalling in neurodevelopmental disorders. Nat. Rev. Neurosci. 2021, 22, 290–307. [Google Scholar] [CrossRef]
- Mhanna, A.; Martini, N.; Hmaydoosh, G.; Hamwi, G.; Jarjanazi, M.; Zaifah, G.; Kazzazo, R.; Haji Mohamad, A.; Alshehabi, Z. The correlation between gut microbiota and both neurotransmitters and mental disorders: A narrative review. Medicine 2024, 103, e37114. [Google Scholar] [CrossRef]
- Robinson, J.E.; Gradinaru, V. Dopaminergic dysfunction in neurodevelopmental disorders: Recent advances and synergistic technologies to aid basic research. Curr. Opin. Neurobiol. 2018, 48, 17–29. [Google Scholar] [CrossRef]
- Lee, J.; Avramets, D.; Jeon, B.; Choo, H. Modulation of Serotonin Receptors in Neurodevelopmental Disorders: Focus on 5-HT7 Receptor. Molecules 2021, 26, 3348. [Google Scholar] [CrossRef] [PubMed]
- Schwarcz, R. Kynurenines and Glutamate: Multiple Links and Therapeutic Implications. Adv. Pharmacol. 2016, 76, 13–37. [Google Scholar] [CrossRef] [PubMed]
- Javelle, F.; Bloch, W.; Knoop, A.; Guillemin, G.J.; Zimmer, P. Toward a neuroprotective shift: Eight weeks of high intensity interval training reduces the neurotoxic kynurenine activity concurrently to impulsivity in emotionally impulsive humans—A randomized controlled trial. Brain Behav. Immun. 2021, 96, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Bilgiç, A.; Abuşoğlu, S.; Sadıç Çelikkol, Ç.; Oflaz, M.B.; Akça, Ö.F.; Sivrikaya, A.; Baysal, T.; Ünlü, A. Altered kynurenine pathway metabolite levels in toddlers and preschool children with autism spectrum disorder. Int. J. Neurosci. 2022, 132, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Almulla, A.F.; Thipakorn, Y.; Tunvirachaisakul, C.; Maes, M. The tryptophan catabolite or kynurenine pathway in autism spectrum disorder; a systematic review and meta-analysis. Autism Res. 2023, 16, 2302–2315. [Google Scholar] [CrossRef] [PubMed]
- Marković, M.; Petronijević, N.; Stašević, M.; Stašević Karličić, I.; Velimirović, M.; Stojković, T.; Ristić, S.; Stojković, M.; Milić, N.; Nikolić, T. Decreased Plasma Levels of Kynurenine and Kynurenic Acid in Previously Treated and First-Episode Antipsychotic-Naive Schizophrenia Patients. Cells 2023, 12, 2814. [Google Scholar] [CrossRef] [PubMed]
- Kegel, M.E.; Bhat, M.; Skogh, E.; Samuelsson, M.; Lundberg, K.; Dahl, M.L.; Sellgren, C.; Schwieler, L.; Engberg, G.; Schuppe-Koistinen, I.; et al. Imbalanced kynurenine pathway in schizophrenia. Int. J. Tryptophan Res. 2014, 7, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Linderholm, K.R.; Skogh, E.; Olsson, S.K.; Dahl, M.L.; Holtze, M.; Engberg, G.; Samuelsson, M.; Erhardt, S. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr. Bull. 2012, 38, 426–432. [Google Scholar] [CrossRef]
- Almulla, A.F.; Vasupanrajit, A.; Tunvirachaisakul, C.; Al-Hakeim, H.K.; Solmi, M.; Verkerk, R.; Maes, M. The tryptophan catabolite or kynurenine pathway in schizophrenia: Meta-analysis reveals dissociations between central, serum, and plasma compartments. Mol. Psychiatry 2022, 27, 3679–3691. [Google Scholar] [CrossRef]
- Horder, J.; Petrinovic, M.M.; Mendez, M.A.; Bruns, A.; Takumi, T.; Spooren, W.; Barker, G.J.; Künnecke, B.; Murphy, D.G. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl. Psychiatry 2018, 8, 106. [Google Scholar] [CrossRef]
- Snyder, M.A.; Gao, W.J. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr. Res. 2020, 217, 60–70. [Google Scholar] [CrossRef]
- Carneiro, I.B.C.; Toscano, A.E.; Lacerda, D.C.; da Cunha, M.S.B.; de Castro, R.M.; Deiró, T.; Medeiros, J.M.B. L-tryptophan administration and increase in cerebral serotonin levels: Systematic review. Eur. J. Pharmacol. 2018, 836, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Compa, M.; Baumbach, C.; Kaczmarek-Majer, K.; Buczyłowska, D.; Gradys, G.O.; Skotak, K.; Degórska, A.; Bratkowski, J.; Wierzba-Łukaszyk, M.; Mysak, Y.; et al. Air pollution and attention in Polish schoolchildren with and without ADHD. Sci. Total Environ. 2023, 892, 164759. [Google Scholar] [CrossRef] [PubMed]
- Saadeh, R.A.; Jayawardene, W.P.; Lohrmann, D.K.; Youssefagha, A.H.; Allouh, M.Z. Air pollutants and attention deficit hyperactivity disorder medication administration in elementary schools. Biomed. Rep. 2022, 17, 85. [Google Scholar] [CrossRef]
- Li, Y.; Xie, T.; Cardoso Melo, R.D.; de Vries, M.; Lakerveld, J.; Zijlema, W.; Hartman, C.A. Longitudinal effects of environmental noise and air pollution exposure on autism spectrum disorder and attention-deficit/hyperactivity disorder during adolescence and early adulthood: The TRAILS study. Environ. Res. 2023, 227, 115704. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.C.; Chen, C.M.; Tsai, J.D.; Chiang, K.L.; Tsai, S.C.; Huang, C.Y.; Lin, C.L.; Hsu, C.Y.; Chang, K.H. Association between Exposure to Particulate Matter Air Pollution during Early Childhood and Risk of Attention-Deficit/Hyperactivity Disorder in Taiwan. Int. J. Environ. Res. Public Health 2022, 19, 16138. [Google Scholar] [CrossRef]
- Banerjee, E.; Nandagopal, K. Does serotonin deficit mediate susceptibility to ADHD? Neurochem. Int. 2015, 82, 52–68. [Google Scholar] [CrossRef] [PubMed]
- Evers, E.A.; van der Veen, F.M.; van Deursen, J.A.; Schmitt, J.A.; Deutz, N.E.; Jolles, J. The effect of acute tryptophan depletion on the BOLD response during performance monitoring and response inhibition in healthy male volunteers. Psychopharmacology 2006, 187, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Biggio, G.; Fadda, F.; Fanni, P.; Tagliamonte, A.; Gessa, G.L. Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5-hydroxyindoleacetic acid by a tryptophan-free diet. Life Sci. 1974, 14, 1321–1329. [Google Scholar] [CrossRef]
- Kanen, J.W.; Apergis-Schoute, A.M.; Yellowlees, R.; Arntz, F.E.; van der Flier, F.E.; Price, A.; Cardinal, R.N.; Christmas, D.M.; Clark, L.; Sahakian, B.J.; et al. Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Mol. Psychiatry 2021, 26, 7200–7210. [Google Scholar] [CrossRef]
- Macoveanu, J.; Hornboll, B.; Elliott, R.; Erritzoe, D.; Paulson, O.B.; Siebner, H.; Knudsen, G.M.; Rowe, J.B. Serotonin 2A receptors, citalopram and tryptophan-depletion: A multimodal imaging study of their interactions during response inhibition. Neuropsychopharmacology 2013, 38, 996–1005. [Google Scholar] [CrossRef]
- Dougherty, D.M.; Richard, D.M.; James, L.M.; Mathias, C.W. Effects of acute tryptophan depletion on three different types of behavioral impulsivity. Int. J. Tryptophan Res. 2010, 3, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Nikolaus, S.; Mamlins, E.; Giesel, F.L.; Schmitt, D.; Müller, H.W. Monoaminergic hypo- or hyperfunction in adolescent and adult attention-deficit hyperactivity disorder? Rev. Neurosci. 2022, 33, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, V.R.; Gilman, T.L.; Daws, L.C.; Gould, G.G. Extreme enhancement or depletion of serotonin transporter function and serotonin availability in autism spectrum disorder. Pharmacol. Res. 2019, 140, 85–99. [Google Scholar] [CrossRef] [PubMed]
- McDougle, C.J.; Naylor, S.T.; Cohen, D.J.; Aghajanian, G.K.; Heninger, G.R.; Price, L.H. Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch. Gen. Psychiatry 1996, 53, 993–1000. [Google Scholar] [CrossRef]
- Makkonen, I.; Riikonen, R.; Kokki, H.; Airaksinen, M.M.; Kuikka, J.T. Serotonin and dopamine transporter binding in children with autism determined by SPECT. Dev. Med. Child Neurol. 2008, 50, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Oblak, A.; Gibbs, T.T.; Blatt, G.J. Reduced serotonin receptor subtypes in a limbic and a neocortical region in autism. Autism Res. 2013, 6, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Kane, M.J.; Angoa-Peréz, M.; Briggs, D.I.; Sykes, C.E.; Francescutti, D.M.; Rosenberg, D.R.; Kuhn, D.M. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: Possible relevance to autism. PLoS ONE 2012, 7, e48975. [Google Scholar] [CrossRef] [PubMed]
- Chugani, D.C.; Muzik, O.; Behen, M.; Rothermel, R.; Janisse, J.J.; Lee, J.; Chugani, H.T. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann. Neurol. 1999, 45, 287–295. [Google Scholar] [CrossRef]
- Fernstrom, J.D. Large neutral amino acids: Dietary effects on brain neurochemistry and function. Amino Acids 2013, 45, 419–430. [Google Scholar] [CrossRef]
- Singh, S.; Sangam, S.R.; Senthilkumar, R. Regulation of Dietary Amino Acids and Voltage-Gated Calcium Channels in Autism Spectrum Disorder. Adv. Neurobiol. 2020, 24, 647–660. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yan, M.; He, L.; Qiu, X.; Zhang, J.; Zhang, Y.; Mo, J.; Day, D.B.; Xiang, J.; Gong, J. Associations between time-weighted personal air pollution exposure and amino acid metabolism in healthy adults. Environ. Int. 2021, 156, 106623. [Google Scholar] [CrossRef]
- Wang, J.; Lin, L.; Huang, J.; Zhang, J.; Duan, J.; Guo, X.; Wu, S.; Sun, Z. Impact of PM(2.5) exposure on plasma metabolome in healthy adults during air pollution waves: A randomized, crossover trial. J. Hazard. Mater. 2022, 436, 129180. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Liu, C.; Yi, T.; Song, X.; Wang, Y.; Liu, S.; Chen, J.; Zhao, Q.; Zhang, Y.; Wang, T.; et al. Perturbation of amino acid metabolism mediates air pollution associated vascular dysfunction in healthy adults. Environ. Res. 2021, 201, 111512. [Google Scholar] [CrossRef]
- Baganz, N.L.; Blakely, R.D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci. 2013, 4, 48–63. [Google Scholar] [CrossRef]
- Mousa, A.; Bakhiet, M. Role of cytokine signaling during nervous system development. Int. J. Mol. Sci. 2013, 14, 13931–13957. [Google Scholar] [CrossRef]
- Ferro, A.; Auguste, Y.S.S.; Cheadle, L. Microglia, Cytokines, and Neural Activity: Unexpected Interactions in Brain Development and Function. Front. Immunol. 2021, 12, 703527. [Google Scholar] [CrossRef] [PubMed]
- Amanollahi, M.; Jameie, M.; Heidari, A.; Rezaei, N. The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol. Neurobiol. 2022, 60, 923–959. [Google Scholar] [CrossRef]
- Shigemoto-Mogami, Y.; Hoshikawa, K.; Goldman, J.E.; Sekino, Y.; Sato, K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J. Neurosci. 2014, 34, 2231–2243. [Google Scholar] [CrossRef]
- Tian, L.; Tan, Y.; Chen, D.; Lv, M.; Tan, S.; Soares, J.C.; Zhang, X.Y. Reduced serum TNF alpha level in chronic schizophrenia patients with or without tardive dyskinesia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 54, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Zhou, D.F.; Cao, L.Y.; Zhang, P.Y.; Wu, G.Y. Decreased production of interleukin-2 (IL-2), IL-2 secreting cells and CD4+ cells in medication-free patients with schizophrenia. J. Psychiatr. Res. 2002, 36, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef]
- Mora, F.; Segovia, G.; Del Arco, A.; de Blas, M.; Garrido, P. Stress, neurotransmitters, corticosterone and body-brain integration. Brain Res. 2012, 1476, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Leret, M.L.; Peinado, V.; Suárez, L.M.; Tecedor, L.; Gamallo, A.; González, J.C. Role of maternal adrenal glands on the developing serotoninergic and aminoacidergic systems of the postnatal rat brain. Int. J. Dev. Neurosci. 2004, 22, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Leret, M.L.; Lecumberri, M.; Garcia-Montojo, M.; González, J.C. Role of maternal corticosterone in the development and maturation of the aminoacidergic systems of the rat brain. Int. J. Dev. Neurosci. 2007, 25, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.V.; Enthoven, L.; van der Mark, M.; Levine, S.; de Kloet, E.R.; Oitzl, M.S. The postnatal development of the hypothalamic-pituitary-adrenal axis in the mouse. Int. J. Dev. Neurosci. 2003, 21, 125–132. [Google Scholar] [CrossRef]
- Lin, L.Z.; Zhan, X.L.; Jin, C.Y.; Liang, J.H.; Jing, J.; Dong, G.H. The epidemiological evidence linking exposure to ambient particulate matter with neurodevelopmental disorders: A systematic review and meta-analysis. Environ. Res. 2022, 209, 112876. [Google Scholar] [CrossRef]
FEMALE | MALE | |||
---|---|---|---|---|
PND14 | PND50 | PND14 | PND50 | |
FC Neurotransmitters | ||||
Glutamine | ||||
Glutamate | ↓ | ↓ | ||
GABA | ||||
Gln/Glu | ||||
Glu/GABA | ||||
Tryptophan | ↓ | |||
Kynurenine | ||||
5HIAA | ||||
5HT | ↑ | |||
5HIAA/5HT | ||||
HVA | ||||
DOPAC | ||||
DA | ||||
NE | ||||
Tyrosine | ↓ | |||
HVA/DA | ||||
DOPAC/DA | ||||
DA/Tyrosine | ↓ | |||
STR Neurotransmitters | ||||
Glutamine | ↓ | ↓ | ↓ | |
Glutamate | ||||
GABA | ↓ | |||
Gln/Glu | ~↓ | ~↓ | ||
Glu/GABA | ||||
Tryptophan | ↓ | ~↓ | ~↓ | |
Kynurenine | ↓ | ↓ | ||
5HIAA | ↓ | ↓ | ||
5HT | ||||
5HIAA/5HT | ↓ | |||
DOPAC | ↓ | |||
DA | ||||
NE | ↑ | |||
Tyrosine | ↓ | |||
DOPAC/DA | ↓ | |||
DA/Tyrosine | ↓ | |||
Cytokines | ||||
IL1-α | ||||
IL1-β | ↓ | ↓ | ||
IL-2 | ||||
IL-6 | ↓ | ↓ | ||
IL-10 | ||||
IFN-γ | ↓ | ↓ | ||
TFN-α | ~↓ | ~↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cory-Slechta, D.A.; Conrad, K.; Marvin, E.; Chalupa, D.; Oberdörster, G.; Sobolewski, M. Developmental Ambient Air Pollution Exposure in Mice Alters Fronto-Striatal Neurotransmitter System Function: Male-Biased Serotonergic Vulnerability. Atmosphere 2024, 15, 853. https://doi.org/10.3390/atmos15070853
Cory-Slechta DA, Conrad K, Marvin E, Chalupa D, Oberdörster G, Sobolewski M. Developmental Ambient Air Pollution Exposure in Mice Alters Fronto-Striatal Neurotransmitter System Function: Male-Biased Serotonergic Vulnerability. Atmosphere. 2024; 15(7):853. https://doi.org/10.3390/atmos15070853
Chicago/Turabian StyleCory-Slechta, Deborah A., Katherine Conrad, Elena Marvin, David Chalupa, Gunter Oberdörster, and Marissa Sobolewski. 2024. "Developmental Ambient Air Pollution Exposure in Mice Alters Fronto-Striatal Neurotransmitter System Function: Male-Biased Serotonergic Vulnerability" Atmosphere 15, no. 7: 853. https://doi.org/10.3390/atmos15070853
APA StyleCory-Slechta, D. A., Conrad, K., Marvin, E., Chalupa, D., Oberdörster, G., & Sobolewski, M. (2024). Developmental Ambient Air Pollution Exposure in Mice Alters Fronto-Striatal Neurotransmitter System Function: Male-Biased Serotonergic Vulnerability. Atmosphere, 15(7), 853. https://doi.org/10.3390/atmos15070853