A High-Precision Sub-Grid Parameterization Scheme for Clear-Sky Direct Solar Radiation in Complex Terrain—Part I: A High-Precision Fast Terrain Occlusion Algorithm
Abstract
:1. Introduction
2. Methods
2.1. The Original High-Precision SPS-CSDSR
2.2. The Two Triangular Planes Algorithm for CSHDSI
2.3. The High-Precision and Fast Terrain Occlusion Algorithm (HPFTOA)
2.3.1. Determining Whether Point A Is Obscured by the Lowest Horizon of the Data Area
2.3.2. Obtaining the Maximum Search Occlusion Radius in the Data Area
2.3.3. Determining Whether Point A Is Obscured by the Horizon in Solar Azimuth
2.3.4. Obtaining the Search Occlusion Radius in Solar Azimuth
2.3.5. Determining Whether A is Obscured within
2.4. DNI Mode to Be Used for Testing
3. Materials
3.1. Study Area
3.2. Data
3.3. Software
3.4. The Server for Testing
4. The Test Plan
5. Testing Results
5.1. Average Error in CSHDSI Based on HPFTOA on Taiwan Island
5.2. Testing Computation Speed
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swift, L.W. Algorithm for solar radiation on mountain slopes. Water Resour. Res. 1976, 12, 108–112. [Google Scholar] [CrossRef]
- Kondratyev, K.Y. Radiation Regime of Inclined Surfaces; Technical Report Report N-79-11613; World Meteorological Organization: New York, NY, USA, 1997; p. 82. [Google Scholar]
- Dozier, J.F.; Frew, J. Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans. Geosci. Remote Sens. 1990, 28, 963–969. [Google Scholar] [CrossRef]
- Dubayah, R.; Dozier, J.; Davis, F.W. Topographic distribution of clear-sky radiation over the Konza Prairie, Kansas. Water Resour. Res. 1990, 26, 679–690. [Google Scholar]
- Dubayah, R.; Rich, P.M. Topographic solar radiation models for GIS. Int. J. Geogr. Inf. Syst. 1995, 9, 405–419. [Google Scholar] [CrossRef]
- Fu, P. A Geometric Solar Radiation Model with Applications in Landscape Ecology. Ph.D. Thesis, University of Kansas, Lawrence, KS, USA, 2000. [Google Scholar]
- Hofierka, J.; Suri, M. The solar radiation model for Open source GIS: Implementation and applications. In Proceedings of the Open Source GIS-Grass Users Conference, Università Degli Studi di Trento, Trento, Italy, 11−13 September 2002. [Google Scholar]
- Kumar, L.; Skidmore, A.K.; Knowles, E. Modelling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 1997, 11, 475–497. [Google Scholar] [CrossRef]
- Müller, M.D.; Scherer, D. A grid- and sub-grid-scale radiation parameterization of topographic effects for mesoscale weather forecast models. Mon. Weather Rev. 2005, 133, 1431–1442. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, A.; Zhu, X. Parameterization of the thermal impacts of sub-grid orography on numerical modeling of the surface energy budget over East Asia. Theor. Appl. Climatol. 2006, 86, 201–214. [Google Scholar] [CrossRef]
- Essery, R.; Marks, D. Scaling and parametrization of clear-sky solar radiation over complex topography. J. Geophys. Res. Atmos. 2007, 112, D10122. [Google Scholar] [CrossRef]
- Gu, C.; Huang, A.; Wu, Y.; Yang, B.; Mu, X.; Zhang, X.; Cai, S. Effects of sub-grid terrain radiative forcing on the ability of RegCM4.1 in the simulation of summer precipitation over China. J. Geophys. Res. Atmos. 2020, 125, e2019JD032215. [Google Scholar] [CrossRef]
- Helbig, N.; Löwe, H. Shortwave radiation parameterization scheme for sub-grid topography. J. Geophys. Res. Atmos. 2012, 117, D03112. [Google Scholar] [CrossRef]
- He, S.; Smirnova, T.G.; Benjamin, S.G. A scale-aware parameterization for estimating sub-grid variability of downward solar radiation using high-resolution digital elevation model data. J. Geophys. Res. Atmos. 2019, 124, 13680–13692. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, A.; Dai, Y.; Li, W.; Gu, C.; Yuan, H.; Wei, N.; Zhang, Y.; Qiu, B.; Cai, S. Influences of 3D sub-grid terrain radiative effect on the performance of CoLM over Heihe River Basin, Tibetan Plateau. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002654. [Google Scholar] [CrossRef]
- Huang, A.; Gu, C.; Zhang, Y.; Li, W.; Zhang, J.; Wu, Y.; Zhang, X.; Cai, S. Development of a clear-sky 3D sub-grid terrain solar radiative effect parameterization scheme based on the mountain radiation theory. J. Geophys. Res. Atmos. 2022, 127, e2022JD036449. [Google Scholar] [CrossRef]
- Hao, D.; Bisht, G.; Gu, Y.; Lee, W.L.; Liou, K.N.; Leung, L.R. A parameterization of sub-grid topographical effects on solar radiation in the E3SM land model (version 1.0): Implementation and evaluation over the Tibetan plateau. Geosci. Model Dev. 2021, 14, 6273–6289. [Google Scholar] [CrossRef]
- Gu, C.; Huang, A.; Zhang, Y.; Yang, B.; Cai, S.; Xu, X.; Luo, J.; Wu, Y. The wet bias of RegCM4 over Tibet Plateau in summer reduced by adopting the 3D sub-grid terrain solar radiative effect parameterization scheme. J. Geophys. Res. Atmos. 2022, 127, e2022JD037434. [Google Scholar] [CrossRef]
- Cai, S.; Huang, A.; Zhu, K.; Guo, W.; Wu, Y.; Gu, C. The forecast skill of the summer precipitation over Tibetan Plateau improved by the adoption of a 3D sub-grid terrain solar radiative effect scheme in a convection-permitting model. J. Geophys. Res. Atmos. 2023, 128, e2022JD038105. [Google Scholar] [CrossRef]
- Chu, Q.; Yan, G.; Wild, M.; Zhou, Y.; Yan, K.; Li, L.; Liu, Y.; Tong, Y.; Mu, X. Ground-Based Radiation Observational Method in Mountainous Areas. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8566–8569. [Google Scholar]
- Rodríguez, E.; Morris, C.S.; Belz, J. A Global Assessment of the SRTM Performance. Photogramm. Eng. Remote Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef]
- Sharpnack, D.A.; Akin, G. An algorithm for computing slope and aspect from elevations. Photogramm. Eng. 1969, 35, 247–248. [Google Scholar]
- Tang, J.; Pilesjö, P.; Persson, A. Estimating slope from raster data—A test of eight algorithms at different resolutions in flat and steep terrain. Geod. Cartogr. 2013, 39, 41–52. [Google Scholar] [CrossRef]
- Li, Z.Q.; Weng, D.M. A computer model to determine topographic parameters (Chinese with English abstract). Acta Geogr. Sin. 1987, 42, 269–278. [Google Scholar] [CrossRef]
- Zhou, Z.W.; Xiong, J.J.; Huang, Y.Y. Method for Determination of Radar Terrain Masking Blind Zone Based on DEM (Chinese with English abstract). J. Air Space Early Warn. Res. 2013, 27, 327–330. [Google Scholar]
- Ed, W. Lat/lon Given Radial and Distance. Aviation Formulary V1.47. 2013. Available online: http://www.edwilliams.org/avform147.htm (accessed on 11 June 2023).
- Neteler, M.; Mitasova, H. Open Source Gis: A GRASS GIS Approach, 3rd ed.; Springer Science Business Media: New York, NY, USA, 2008. [Google Scholar]
- Hofierka, J.; Kaňuk, J. Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renew. Energy 2009, 34, 2206–2214. [Google Scholar] [CrossRef]
- Ruiz-Arias, J.A.; Tovar-Pescador, J.; Pozo-Vázquez, D.; Alsamamra, H. A comparative analysis of DEM-based models to estimate the solar radiation in mountainous terrain. Int. J. Geogr. Inf. Sci. 2009, 23, 1049–1076. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Pearce, J.M. Estimating Potential Photovoltaic Yield with r.sun and the Open-Source Geographical Resources Analysis Support System. Sol. Energy 2010, 84, 831–843. [Google Scholar] [CrossRef]
- Pintor, B.H.; Sola, E.F.; Teves, J.; Inocencio, L.C.; Ang, M.R.C.; Concepcion, R. Solar energy resource assessment using R. SUN in GRASS GIS and site suitability analysis using AHP for groundmounted solar photovoltaic (Pv) farm in the Central Luzon Region (Region 3), Philippines. In Proceedings of the Free and Open Source Software for Geospatial (Foss4g) Conference Proceedings, Seoul, Republic of Korea, 14–19 September 2015. [Google Scholar]
- Remund, J.; Wald, L.; Lefèvre, M.; Ranchin, T.; Page, J.H. Worldwide Linke turbidity information. In Proceedings of the ISES Solar World Congress 2003, Göteborg, Sweden, 14–19 June 2003. [Google Scholar]
- Lai, Y.-J.; Chou, M.-D.; Lin, P.-H. Parameterization of topographic effect on surface solar radiation. J. Geophys. Res. Atmos. 2010, 115, D01104. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. The Shuttle Radar Topography Mission (SRTM) 90m Digital Elevation Database v4.1 [Dataset]. International Centre for Tropical Agriculture (CIAT). 2008. Available online: https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4 (accessed on 17 June 2023).
- Carrera-Hernández, J.J. Not all DEMs are equal: An evaluation of six globally available 30 m resolution DEMs with geodetic benchmarks and LiDAR in Mexico. Remote Sens. Environ. 2021, 261, 112474. [Google Scholar] [CrossRef]
- Giles, P.T. Remote sensing and cast shadows in mountainous terrain. Photogramm. Eng. Remote Sens. 2001, 67, 833–840. [Google Scholar]
- Zhang, H.; Xin, X.; Liu, Q. Modeling daily net shortwave radiation over rugged surfaces using MODIS atmospheric products. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 3787–3790. [Google Scholar]
- Huang, G.; Li, Z.; Li, X.; Liang, S.; Yang, K.; Wang, D.; Zhang, Y. Estimating surface solar irradiance from satellites: Past, present, and future perspectives. Remote Sens. Environ. 2019, 233, 111371. [Google Scholar] [CrossRef]
- Gold 6526Y Outperforms Gold 6132 by a Whopping 110% Based on Our Aggregated Benchmark Results. Available online: https://technical.city/en/cpu/Xeon-Gold-6132-vs-Xeon-Gold-6526Y (accessed on 7 March 2024).
Index | Method | User |
---|---|---|
1 | Ignoring the cast shadows. | Dubayah (1990) [4]; Zhang (2006) [10]; He (2019) [14]; Gu (2020) [12] |
2 | Assuming that sub-grid cells in an atmospheric model grid cell have the same slope and the slope direction is evenly distributed in all directions. | Dubayah (1990) [4]; Helbig and Löwe (2013) [14] |
3 | Using low-resolution DEM data. | Muller and Scherer (2005) [9] used the 30″ (~1 km); Zhang (2006) [10] used the 5′ (~9 km) |
4 | Using a function to predict the fraction of the surface in shadow in the atmospheric model grid. | Essery and Marks (2007) [9] |
5 | Ignoring that the slope area is larger than the horizontal projection area. | He (2019) [14]; Gu (2020) [12], Zhang (2022) [15] |
6 | Calculating terrain effects without the cast shadows on the atmospheric model grid cell by utilizing the solar position factors (altitude, azimuth) and mean value of sub-grid terrain factor (slope, aspect) function values. | He (2019) [14] |
7 | Based on the method similar to He, using the cast shadowless coverage factor in the atmospheric model grid. . When a sub-grid cell is in cast shadow, ; otherwise, . N is the number of sub-grid cells in the parent grid. | Zhang (2022) [15] |
8 | Adjusting to by the equation , where . is the east–west grid spacing (km) at this latitude. | Huang (2022) [16] |
9 | Using an insufficient occlusion search radius. | Huang (2022) [16] used the 27 km; Zhang (2022) [15] used the 9 km |
10 | Using DEM90 data, within a 27 km search radius and in 100 azimuth directions, the maximum terrain shielding angle was calculated for each sub-grid. These data were converted into a cast shadowless coverage lookup table based on 100 azimuth directions and 100 maximum terrain shielding angle sine levels. | Huang (2022) [16] |
Plan | Computation Time (Minutes) | (W/m2) | |||
---|---|---|---|---|---|
Index | Content | Summer Solstice | Winter Solstice | Summer Solstice | Winter Solstice |
1 | 47.23 | 40.17 | / | / | |
2 | 39.49 | 34.80 | 5.2 | 4.8 | |
3 | 36.98 | 33.18 | 8.5 | 14.6 | |
4 | U27 | 40.72 | 24.24 | 181.6 | 357.4 |
Number of Cores | Small-Region | Medium-Region | Large-Region | |
---|---|---|---|---|
10° × 10° | 30° × 20° | 60° × 40° | 80° × 60° | |
30 | 9.3~10.6 | 56.1~63.6 | 224.2~254.4 | 448.4~508.8 |
300 | 0.9~1.1 | 5.6~6.4 | 22.4~25.4 | 44.8~50.9 |
1000 | 0.3~0.3 | 1.7~1.9 | 6.7~7.6 | 13.5~15.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wu, W.; Chen, Y.; Feng, G.; Chen, B.; Wen, X. A High-Precision Sub-Grid Parameterization Scheme for Clear-Sky Direct Solar Radiation in Complex Terrain—Part I: A High-Precision Fast Terrain Occlusion Algorithm. Atmosphere 2024, 15, 857. https://doi.org/10.3390/atmos15070857
Li C, Wu W, Chen Y, Feng G, Chen B, Wen X. A High-Precision Sub-Grid Parameterization Scheme for Clear-Sky Direct Solar Radiation in Complex Terrain—Part I: A High-Precision Fast Terrain Occlusion Algorithm. Atmosphere. 2024; 15(7):857. https://doi.org/10.3390/atmos15070857
Chicago/Turabian StyleLi, Changyi, Wei Wu, Yanan Chen, Guili Feng, Bin Chen, and Xiaopei Wen. 2024. "A High-Precision Sub-Grid Parameterization Scheme for Clear-Sky Direct Solar Radiation in Complex Terrain—Part I: A High-Precision Fast Terrain Occlusion Algorithm" Atmosphere 15, no. 7: 857. https://doi.org/10.3390/atmos15070857
APA StyleLi, C., Wu, W., Chen, Y., Feng, G., Chen, B., & Wen, X. (2024). A High-Precision Sub-Grid Parameterization Scheme for Clear-Sky Direct Solar Radiation in Complex Terrain—Part I: A High-Precision Fast Terrain Occlusion Algorithm. Atmosphere, 15(7), 857. https://doi.org/10.3390/atmos15070857