Assessing Multi-Scale Atmospheric Circulation Patterns for Improvements in Sub-Seasonal Precipitation Predictability in the Northern Great Plains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Observed Gridded Precipitation Products
2.1.2. NARR Reanalysis
2.1.3. CFS
2.2. Methodology
2.2.1. The GP-LLJ Index
2.2.2. The CGT Index
2.2.3. The Thirty-Day Forecast of the CFS
2.2.4. Spatial and Temporal Attributions
3. Results
3.1. Diagnostics of NGP Precipitation, GP-LLJ, and CGT
3.1.1. Geospatial Precipitation Pattern Attributions
3.1.2. Sub-Seasonal Modes of Variability
3.1.3. Interannual Modes of Extended Precipitation and Drought
3.2. Sources of NGP Precipitation Predictability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USGCRP. U.S. Climate Modeling Summit (USCMS), 2023: The Nineth U.S. Climate Modeling Report. NOAA Center for Weather and Climate Prediction, College Park, MD. Available online: https://www.globalchange.gov/sites/default/files/documents/igim/USCMS_2023_Summit_Report.pdf (accessed on 1 December 2023).
- National Oceanic and Atmospheric Administration-National Weather Service. Climate Prediction Center Official 30-Day Forecast. 2024. Available online: https://www.cpc.ncep.noaa.gov/products/predictions/30day/ (accessed on 10 January 2024).
- Kirtman, B.P.; Min, D.; Infanti, J.M.; Kinter, J.L.; Paolino, D.A.; Zhang, Q.; Dool, H.v.D.; Saha, S.; Mendez, M.P.; Becker, E.; et al. The North American Multimodel Ensemble: Phase-1 Seasonal-to-interannual prediction; Phase-2 Toward developing intraseasonal prediction. Bull. Am. Meteorol. Soc. 2014, 95, 585–601. [Google Scholar] [CrossRef]
- Vitart, F.; Ardilouze, C.; Bonet, A.; Brookshaw, A.; Chen, M.; Codorean, C.; Déqué, M.; Ferranti, L.; Fucile, E.; Fuentes, M.; et al. The sub-seasonal to seasonal prediction (S2S) project database. Bull. Am. Meteorol. Soc. 2016, 98, 163–173. [Google Scholar] [CrossRef]
- Chikamoto, Y.; Timmermann, A.; Widlansky, M.J.; Balmaseda, M.A.; Stott, L. Multi-year predictability of climate, drought, and wildfire in southwestern North America. Sci. Rep. 2017, 7, 6568. [Google Scholar] [CrossRef] [PubMed]
- L’heureux, M.L.; Tippett, M.K.; Becker, E.J. Sources of Sub-seasonal Skill and Predictability in Wintertime California Precipitation Forecasts. Weather. Forecast. 2021, 36, 1815–1826. [Google Scholar] [CrossRef]
- Huang, H.; Patricola, C.M.; Bercos-Hickey, E.; Zhou, Y.; Rhoades, A.; Risser, M.D.; Collins, W.D. Sources of Sub-seasonal-To-Seasonal Predictability of Atmospheric Rivers and Precipitation in the Western United States. J. Geophys. Res. Atmos. 2021, 126, e2020JD034053. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Kumar, A.; Leung, R.; Mariotti, A.; Mo, K.; Schubert, S.; Seager, R. Causes and predictability of the 2012 Great Plains drought. Bull. Am. Meteorol. Soc. 2014, 95, 269–282. [Google Scholar] [CrossRef]
- Johnson, G.P.; Holmes, R.R., Jr.; Waite, L.A. The Great Flood of 1993 on the upper Mississippi River—10 years later. U.S. Geological Survey Information Sheet, 6 p. 2003. Available online: https://pubs.usgs.gov/fs/2004/3024/report.pdf (accessed on 19 July 2024).
- Smith, A.B.; Katz, R.W. U.S. Billion-dollar Weather and Climate Disasters: Data Sources, Trends, Accuracy and Biases. Nat. Hazards 2013, 67, 387–410. [Google Scholar] [CrossRef]
- United States Department of Agriculture-National Agriculture Statistics Service (NASS). Available online: https://www.nass.usda.gov (accessed on 2 December 2023).
- Garber, K. Midwest Floods Ruin Crops. U.S. News. 2008. Available online: https://www.usnews.com/news/national/articles/2008/06/18/midwest-floods-ruin-crops (accessed on 2 December 2023).
- National Corn Growers Associations (NCGA). Available online: www.worldofcorn.com (accessed on 3 December 2023).
- United States Department of Agriculture-National Agriculture Statistics Service (NASS-Census). Available online: https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Ag_Census_Web_Maps/index.php (accessed on 3 December 2023).
- Ou, G.; Munoz-Arriola, F.; Uden, D.R.; Martin, D.; Allen, C.R.; Shank, N. Climate change implications for irrigation and groundwater in the Republican River Basin, USA. Clim. Chang. 2018, 151, 303–316. [Google Scholar] [CrossRef]
- Uden, D.R.; Allen, C.R.; Munoz-Arriola, F.; Ou, G.; Shank, N. A Framework for Tracing Social–Ecological Trajectories and Traps in Intensive Agricultural Landscapes. Sustainability 2018, 10, 1646. [Google Scholar] [CrossRef]
- Amaranto, A.; Pianosi, F.; Solomatine, D.; Corzo, G.; Muñoz-Arriola, F. Sensitivity Analysis of Hydroclimatic Controls of Data-driven Groundwater Forecast in Irrigated Croplands. J. Hydrol. 2020, 587, 124957. [Google Scholar] [CrossRef]
- Sarzaeim, P.; Muñoz-Arriola, F.; Jarquin, D. Analytics for climate-uncertainty estimation and propagation in maize-phenotype predictions. In Proceedings of the 2020 ASABE Annual International Meeting, Omaha, NE, USA, 12–15 July 2020. Paper No. 1165. [Google Scholar] [CrossRef]
- Muñoz-Arriola, F.; Abdel-Monem, T.; Amaranto, A. Common pool resource management: Assessing water resources planning processes for hydrologically connected surface and groundwater systems. Hydrology 2021, 8, 51. [Google Scholar] [CrossRef]
- Sarzaeim, P.; Ou, W.; de Oliveira, L.A.; Munoz-Arriola, F. Flood-Risk Analytics for Climate-Resilient Agriculture Using Remote Sensing in the Northern High Plains. In Geo-Extreme 2021; ASCE: Reston, VA, USA, 2021; pp. 234–244. [Google Scholar] [CrossRef]
- Sarzaeim, P.; Muñoz-Arriola, F.; Jarquín, D. Climate and genetic data enhancement using deep learning analytics to improve maize yield predictability. J. Exp. Bot. 2022, 73, 5336–5354. [Google Scholar] [CrossRef] [PubMed]
- Sarzaeim, P.; Muñoz-Arriola, F.; Jarquin, D.; Aslam, H.; Gatti, N.D.L. CLIM4OMICS: A geospatially comprehensive climate and multi-OMICS database for maize phenotype predictability in the United States and Canada. Earth Syst. Sci. Data 2023, 15, 3963–3990. [Google Scholar] [CrossRef]
- Livneh, B.; Rosenberg, E.A.; Lin, C.; Nijssen, B.; Mishra, V.; Andreadis, K.M.; Maurer, E.P.; Lettenmaier, D.P. A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Clim. 2013, 26, 9384–9392. [Google Scholar] [CrossRef]
- Bonner, W.D. Climatology of the low level jet. Mon. Weather. Rev. 1968, 96, 833–850. [Google Scholar] [CrossRef]
- Bell, G.D.; Janowiak, J.E. Atmospheric circulation associated with the Midwest floods of 1993. Bull. Am. Meteorol. Soc. 1995, 76, 681–695. [Google Scholar] [CrossRef]
- Arritt, R.W.; Rink, T.D.; Segal, M.; Todey, D.P.; Clark, C.A.; Mitchell, M.J.; Labas, K.M. The Great Plains low-level jet during the warm season of 1993. Mon. Weather. Rev. 1997, 125, 2176–2192. [Google Scholar] [CrossRef]
- Weaver, S.J.; Nigam, S. Recurrent supersynoptic evolution of the Great Plains low-level jet. J. Clim. 2011, 24, 575–582. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year Reanalysis Project. Bull. Amer. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Amer. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, B. Circumglobal teleconnection in the Northern Hemisphere summer. J. Clim. 2005, 18, 3483–3505. [Google Scholar] [CrossRef]
- CianCiancarelli, B.; Castro, C.L.; Woodhouse, C.; Dominguez, F.; Chang, H.; Carrillo, C.; Griffin, D. Dominant patterns of U.S. warm season precipitation variability in a fine resolution observational record, with focus on the southwest. Int. J. Clim. 2013, 34, 687–707. [Google Scholar] [CrossRef]
- Weaver, S.J.; Nigam, S. Variability of the Great Plains low-level jet: Large-scale circulation context and hydroclimate impacts. J. Clim. 2008, 21, 1532–1551. [Google Scholar] [CrossRef]
- Branstator, G. Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Clim. 2002, 15, 1893–1910. [Google Scholar] [CrossRef]
- PaiMazumder, D.; Done, J.M. Potential predictability sources of the 2012 U.S. drought in observations and a regional model ensemble. J. Geophys. Res. Atmos. 2016, 121, 581–592. [Google Scholar] [CrossRef]
- Malloy, K.M.; Kirtman, B.P. Predictability of Midsummer Great Plains Low-Level Jet and Associated Precipitation. Weather. Forecast. 2020, 35, 215–235. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Shepard, D.S. Computer mapping: The SYMAP interpolation algorithm. In Spatial Statistics and Models; Gaile, G.L., Wilmott, C.J., Eds.; Springer-Science +Business Media: Dordrecht, The Netherlands, 1984; pp. 133–145. [Google Scholar]
- Daly, C.; Neilson, R.P.; Phillips, D.L. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol. Climatol. 1994, 33, 140–158. [Google Scholar] [CrossRef]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Higgins, R.W.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. 2008, 113, 1–13. [Google Scholar] [CrossRef]
- Wilks, D.S. Enforcing calibration in ensemble postprocessing. Q. J. R. Meteorol. Soc. 2017, 144, 76–84. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- NOAA National Operational Model Archive and Distribution System (NOMADS). Available online: https://nomads.ncep.noaa.gov (accessed on 3 December 2023).
- Weaver, S.J.; Ruiz-Barradas, A.; Nigam, S. Pentad evolution of the 1988 drought and 1993 flood over the Great Plains: An NARR perspective on the atmospheric and terrestrial water balance. J. Clim. 2009, 22, 5366–5384. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Elsevier: Amsterdam, The Netherlands, 2011; 676p. [Google Scholar]
- Murakami, M. Large-scale aspects of deep convective activity over the GATE area. Mon. Weather. Rev. 1979, 107, 994–1013. [Google Scholar] [CrossRef]
- Lees, J.M.; Park, J. Multi-taper spectral analysis: A stand-alone C-subroutine. Comput. Geosci. 1995, 21, 199–236. [Google Scholar] [CrossRef]
- Livezey, R.E.; Chen, W.Y. Statistical field significance and its determination by Monte Carlo techniques. Mon. Weather. Rev. 1983, 111, 46–59. [Google Scholar] [CrossRef]
- Jiang, X.; Lau, N.-C.; Held, I.M.; Ploshay, J.J. Mechanisms of Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci. 2007, 64, 532–547. [Google Scholar] [CrossRef]
- Barlow, M.; Gutowski, W.J.; Gyakum, J.R.; Katz, R.W.; Lim, Y.-K.; Schumacher, R.S.; Wehner, M.F.; Agel, L.; Bosilovich, M.; Collow, A.; et al. North American extreme precipitation events and related large-scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Clim. Dyn. 2019, 53, 6835–6875. [Google Scholar] [CrossRef]
- Li, S.; Robertson, A.W. Evaluation of submonthly precipitation forecast skill from global ensemble prediction systems. Mon. Weather. Rev. 2015, 143, 2871–2889. [Google Scholar] [CrossRef]
- Mariotti, A.; Ruti, P.M.; Rixen, M. Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. Npj Clim. Atmos. Sci. 2018, 1, 4. [Google Scholar] [CrossRef]
- Jaimes-Correa, J.C.; Muñoz-Arriola, F.; Bartelt-Hunt, S. Modeling water quantity and quality nonlinearities for watershed adaptability to hydroclimate extremes in agricultural landscapes. Hydrology 2022, 9, 80. [Google Scholar] [CrossRef]
- Sarzaeim, P.; Muñoz-Arriola, F. A Method to Estimate Climate Drivers of Maize Yield Predictability Leveraging Genetic-by-Environment Interactions in the US and Canada. Agronomy 2024, 14, 733. [Google Scholar] [CrossRef]
- Nielsen, R.L. Corn Management for Extreme Conditions. Corny News Network (Purdue University). 2012. Available online: https://www.agry.purdue.edu/ext/corn/news/timeless/extremecornmgmt.html (accessed on 10 February 2018).
- Melton, F.S.; Huntington, J.; Grimm, R.; Herring, J.; Hall, M.; Rollison, D.; Erickson, T.; Allen, R.; Anderson, M.; Fisher, J.B.; et al. OpenET: Filling a critical data gap in water management for the western United States. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 971–994. [Google Scholar] [CrossRef]
- Volk, J.M.; Huntington, J.L.; Melton, F.S.; Allen, R.; Anderson, M.; Fisher, J.B.; Kilic, A.; Ruhoff, A.; Senay, G.B.; Minor, B.; et al. Assessing the accuracy of OpenET satellite-based evapotranspiration data to support water resource and land management applications. Nat. Water 2024, 2, 193–205. [Google Scholar] [CrossRef]
- Wilson, A.; Cifelli, R.; Munoz-Arriola, F.; Giovannettone, J.; Vano, J.; Parzybok, T.; Dufour, A.; Jasperse, J.; Mahoney, K.; McCormick, B. Efforts to Build Infrastructure Resiliency to Future Hydroclimate Extremes. In Geo-Extreme 2021; ASCE: Reston, VA, USA, 2021; pp. 222–233. [Google Scholar] [CrossRef]
- Dagon, K.; Truesdale, J.; Biard, J.C.; Kunkel, K.E.; Meehl, G.A.; Molina, M.J. Machine Learning‚ Based Detection of Weather Fronts and Associated Extreme Precipitation in Historical and Future Climates. J. Geophys. Res. Atmos. 2022, 127, e2022JD037038. [Google Scholar] [CrossRef]
- Pandey, V.; Srivastava, P.K.; Mall, R.K.; Munoz-Arriola, F.; Han, D. Multi-Satellite Precipitation Products for Meteorological Drought Assessment and Forecasting in Bundelkhand region of Central India. Geocarto Int. 2020, 37, 1899–1918. [Google Scholar] [CrossRef]
- Rehana, S.; Yeleswarapu, P.; Basha, G.; Munoz-Arriola, F. Precipitation and Temperature Extremes and Association with Large-scale Climate Indices: An Observational Evidence over India. J. Earth Syst. Sci. 2022, 131, 170. [Google Scholar] [CrossRef]
- Carrillo, C.M.; Muñoz-Arriola. Precipitation, Low-Level Jet, and Geopotential Height Data for Analyzing Sources of Predictability in the US Northern Great Plains [Data Set]. Zenodo. 2021. Available online: https://zenodo.org/records/5784508 (accessed on 19 July 2024).
Model Initialization | NGP Precipitation | GP-LLJ Index | CGT Index |
---|---|---|---|
11 May 1988 | 0.44 | 0.14 | 0.12 |
21 May 1988 | 0.77 | 0.36 | 0.13 |
25 June 1988 | 0.46 | 0.21 | 0.31 |
30 June 1988 | 0.37 | 0.39 | 0.57 |
15 July 1988 | 0.36 | 0.38 | −0.33 |
9 August 1988 | 0.42 | 0.36 | −0.39 |
5 July 1993 | 0.38 | 0.71 | 0.12 |
20 July 1993 | 0.48 | 0.60 | 0.3 |
9 August 1993 | 0.55 | 0.56 | −0.22 |
14 August 1993 | 0.38 | 0.57 | 0.29 |
24 August 1993 | 0.45 | 0.01 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo, C.M.; Muñoz-Arriola, F. Assessing Multi-Scale Atmospheric Circulation Patterns for Improvements in Sub-Seasonal Precipitation Predictability in the Northern Great Plains. Atmosphere 2024, 15, 858. https://doi.org/10.3390/atmos15070858
Carrillo CM, Muñoz-Arriola F. Assessing Multi-Scale Atmospheric Circulation Patterns for Improvements in Sub-Seasonal Precipitation Predictability in the Northern Great Plains. Atmosphere. 2024; 15(7):858. https://doi.org/10.3390/atmos15070858
Chicago/Turabian StyleCarrillo, Carlos M., and Francisco Muñoz-Arriola. 2024. "Assessing Multi-Scale Atmospheric Circulation Patterns for Improvements in Sub-Seasonal Precipitation Predictability in the Northern Great Plains" Atmosphere 15, no. 7: 858. https://doi.org/10.3390/atmos15070858
APA StyleCarrillo, C. M., & Muñoz-Arriola, F. (2024). Assessing Multi-Scale Atmospheric Circulation Patterns for Improvements in Sub-Seasonal Precipitation Predictability in the Northern Great Plains. Atmosphere, 15(7), 858. https://doi.org/10.3390/atmos15070858