Progress on Numerical Simulation of Gas-Liquid Two-Phase Flow in Self-Priming Pump
Abstract
:1. Introduction
2. Numerical Model of Gas-Liquid Two-Phase Flow and Its Application in Pumps
2.1. Numerical Model for Simulating Gas-Liquid Two-Phase Flow
2.2. Numerical Simulation of Gas-Liquid Two-Phase Flow in a Pump
3. Research on Gas-Liquid Numerical Simulation Method of Self-Priming Process
4. Research on Factors Affecting the Performance of Self-Priming Pumps
5. Conclusions and Prospects
5.1. Conclusions
5.2. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Yang, S.; Wu, D.; Mou, J. Effect of particle mass concentration on erosion characteristics of self-priming pump. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 6782–6797. [Google Scholar] [CrossRef]
- Qian, H.; Mou, J.; Wu, D.; Ren, Y.; Zheng, S.; Zhu, Z. Experimental investigation on the gas-liquid flow patterns in a centrifugal pump during self-priming process. AIP Adv. 2020, 10, 010101. [Google Scholar] [CrossRef]
- Xiao, L.; Long, X. Cavitating flow in annular jet pumps. Int. J. Multiph. Flow 2015, 71, 116–132. [Google Scholar] [CrossRef]
- Qian, H.; Wu, D.; Xiang, C.; Jiang, J.; Zhu, Z.; Zhou, P.; Mou, J. A Visualized Experimental Study on the Influence of Reflux Hole on the Double Blades Self-Priming Pump Performance. Energies 2022, 15, 4617. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, Y.; Wang, Q.; Tang, H.; Yu, H. Influence of outlet baffle on the self-priming performance of a jet self-priming pump. J. Drain. Mach. Eng. 2020, 38, 469–475. (In Chinese) [Google Scholar]
- Zhang, Y.; Zhou, F.; Li, J.; Kang, J.; Zhang, Q. Application and research of new energy-efficiency technology for liquid ring vacuum pump based on turbulent drag reduction theory. Vacuum 2020, 172, 109076. [Google Scholar] [CrossRef]
- Verde, W.M.; Biazussi, J.L.; Sassim, N.A.; Bannwart, A.C. Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers. Exp. Therm. Fluid Sci. 2017, 85, 37–51. [Google Scholar] [CrossRef]
- Mansour, M.; Wunderlich, B.; Thévenin, D. Effect of tip clearance gap and inducer on the transport of two-phase air-water flows by centrifugal pumps. Exp. Therm. Fluid Sci. 2018, 99, 487–509. [Google Scholar] [CrossRef]
- Suh, J.W.; Kim, J.W.; Choi, Y.S.; Kim, J.H.; Joo, W.G.; Lee, K.Y. Development of numerical Eulerian-Eulerian models for simulating multiphase pumps. J. Pet. Sci. Eng. 2018, 162, 588–601. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, L. Energy performance and pressure fluctuation of a multiphase pump with different gas volume fractions. Energies 2018, 11, 1216. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Cai, S.J.; Li, Y.J. Optimization design of multiphase pump impeller based on combined genetic algorithm and boundary vortex flux diagnosis. J. Hydrodyn. Ser. B 2017, 29, 1023–1034. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, H.Q. A review of experiments and modeling of gas-liquid flow in electrical submersible pumps. Energies 2018, 11, 180. [Google Scholar] [CrossRef]
- El-Batsh, H.M.; Doheim, M.A.; Hassan, A.F. On the application of mixture model for two-phase flow induced corrosion in a complex pipeline configuration. Appl. Math. Model. 2012, 36, 5686–5699. [Google Scholar] [CrossRef]
- Liu, J.R.; Su, Q.Q.; Xu, Y.G.; Zhou, X.; Zhang, Y.X. Numerical analysis of the internal flow field in a jet self-priming irrigation pump. J. Drain. Mach. 2009, 27, 347–351. (In Chinese) [Google Scholar]
- Shi, P.; Rzehak, R. Bubbly flow in stirred tanks: Euler-Euler/RANS modeling. Chem. Eng. Sci. 2018, 190, 419–435. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Ashgriz, N.; Poo, J.Y. FLAIR: Flux line-segment model for advection and interface reconstruction. J. Comput. Phys. 1991, 93, 449–468. [Google Scholar] [CrossRef]
- Ubbink, O.; Issa, R. A method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys. 1999, 153, 26–50. [Google Scholar] [CrossRef]
- Sengupta, J.; James, A.; Singh, R.; Bale, S. Size effect of oscillating columns on mixing: A CFD study. Eur. J. Mech.-B/Fluids 2019, 77, 230–238. [Google Scholar] [CrossRef]
- Zhao, H.L.; Zhao, X.; Mu, L.Z.; Zhang, L.F.; Yang, L.Q. Gas-liquid mass transfer and flow phenomena in a Peirce-Smith converter: A numerical model study. Int. J. Miner. Metall. Mater. 2019, 26, 1092–1104. [Google Scholar] [CrossRef]
- Sun, C.; Ning, Z.; Qiao, X.; Lv, M.; Fu, J.; Zhao, J.; Wang, X. Numerical simulation of gas–liquid flow behavior in the nozzle exit region of an effervescent atomizer. Int. J. Spray Combust. Dyn. 2019, 11, 175682771882159. [Google Scholar] [CrossRef]
- Ciappi, L.; Stebel, M.; Smolka, J.; Cappietti, L.; Manfrida, G. Analytical and computational fluid dynamics models of Wells turbines for oscillating water column systems. J. Energy Resour. Technol. 2022, 144, 050903. [Google Scholar] [CrossRef]
- Jiang, Q.; Heng, Y.; Liu, X.; Zhang, W.; Bois, G.; Si, Q. A review of design considerations of centrifugal pump capability for handling inlet gas-liquid two-phase flows. Energies 2019, 12, 1078. [Google Scholar] [CrossRef]
- Xiuli, W.; Yonggang, L.; Rongsheng, Z.; Qiang, F.; Weiyuan, Z. Study of non-linear cavitation on flow characteristics inside the centrifugal pump. J. Balk. Tribol. Assoc. 2016, 22, 2828. [Google Scholar]
- Furuya, O. An analytical model for prediction of two-phase (noncondensable) flow pump performance. J. Fluids Eng. 1985, 107, 139–147. [Google Scholar] [CrossRef]
- Minemura, K.; Uchiyama, T.; Shoda, S.; Egashira, K. Prediction of air-water two-phase flow performance of a centrifug-al pump based on one-dimensional two-fluid model. J. Fluids Eng. ASME 1998, 120, 327–334. [Google Scholar] [CrossRef]
- Chan, A.M.C.; Kawaji, M.; Nakamura, H.; Kukita, Y. Experimental study of two-phase pump performance using a full size nuclear reactor pump. Nucl. Eng. Des. 1999, 193, 159–172. [Google Scholar] [CrossRef]
- Poullikkas, A. Two phase flow performance of nuclear reactor cooling pumps. Prog. Nucl. Energy 2000, 36, 123–130. [Google Scholar] [CrossRef]
- Poullikkas, A. Effects of two-phase liquid-gas flow on the performance of nuclear reactor cooling pumps. Prog. Nucl. Energy 2003, 42, 3–10. [Google Scholar] [CrossRef]
- Hazra, S.B.; Steiner, K. Computation of dilute two-phase flow in a pump. J. Comput. Appl. Math. 2007, 203, 444–460. [Google Scholar] [CrossRef]
- Caridad, J.; Asuaje, M.; Kenyery, F.; Tremante, A.; Aguillón, O. Characterization of a centrifugal pump impeller under two-phase flow conditions. J. Pet. Sci. Eng. 2008, 63, 18–22. [Google Scholar] [CrossRef]
- Gao, H.; Gao, F.; Zhao, X.; Chen, J.; Cao, X. Transient flow analysis in reactor coolant pump systems during flow coastdown period. Nucl. Eng. Des. 2011, 241, 509–514. [Google Scholar] [CrossRef]
- Barrios, L.; Prado, M.G. Modeling two-phase flow inside an electrical submersible pump stage. J. Energy Resour. Technol. December 2011, 133(4), 042902. [Google Scholar] [CrossRef]
- Lu, J.L.; Xi, G.; Qi, D.T. Numerical study of three-dimensional gas-liquid two-phase flow in a centrifugal pump impeller. J. Eng. Thermophys. 2003, 24, 237–240. (In Chinese) [Google Scholar]
- Yu, Z.Y.; Cao, S.L.; Wang, G.Y. Numerical calculation of gas-liquid two-phase flow in a blade-type mixed transport pump. J. Eng. Thermophys. 2007, 28, 46–48. (In Chinese) [Google Scholar] [CrossRef]
- Xie, P.; Zhu, Z.C. Experimental analysis of cavitation in a low specific speed centrifugal vortex pump. J. Hydraul. Eng. 2009, 40, 1506–1511. (In Chinese) [Google Scholar]
- Ma, X.J.; Li, X.K.; Wang, N.; Zhou, G.W. Influence of guide vane blade number on the performance of gas-liquid mixed transport pump. J. Lanzhou Univ. Technol. 2012, 38, 51–55. (In Chinese) [Google Scholar]
- Huang, S.; Yue, L.; Guo, J.; Wang, L. Unsteady numerical simulation of gas-liquid two-phase flow during the self-priming process of a centrifugal pump. Sci. Technol. Guide 2013, 31, 36–40. (In Chinese) [Google Scholar]
- Yu, Z.; Zhu, B.; Cao, S. Interphase force analysis for air-water bubbly flow in a multiphase rotodynamic pump. Eng. Comput. 2015, 32, 2166–2180. [Google Scholar] [CrossRef]
- Liu, M.; Cao, S.; Cao, S. Numerical analysis for interphase forces of gas-liquid flow in a multiphase pump. Eng. Comput. 2018, 35, 2386–2402. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, J.; Cao, G.; Zhao, Q.; Peng, J.; Zhu, H.; Zhang, H.Q. Modeling flow pattern transitions in electrical submersible pump under gassy flow conditions. J. Pet. Sci. Eng. 2019, 180, 471–484. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, H.; Zhang, J.; Zhang, H.Q. A numerical study on flow patterns inside an electrical submersible pump (ESP) and comparison with visualization experiments. J. Pet. Sci. Eng. 2019, 173, 339–350. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, H.Q. Mechanistic modeling and numerical simulation of in-situ gas void fraction inside ESP impeller. J. Nat. Gas Sci. Eng. 2016, 36, 144–154. [Google Scholar] [CrossRef]
- Yan, S.; Sun, S.; Luo, X.; Chen, S.; Li, C.; Feng, J. Numerical investigation on bubble distribution of a multistage centrifugal pump based on a population balance model. Energies 2020, 13, 908. [Google Scholar] [CrossRef]
- Chen, Y.; Patil, A.; Chen, Y.; Bai, C.; Wang, Y.; Morrison, G. Numerical study on the first stage head degradation in an electrical submersible pump with population balance model. J. Energy Resour. Technol. 2019, 141, 022003. [Google Scholar] [CrossRef]
- Lu, T.Q.; Li, H.; Zhan, L.C. Numerical calculation and visualization experimental study on self-priming process of pump. J. Drain. Irrig. Mach. Eng. 2016, 34, 11. (In Chinese) [Google Scholar]
- Wang, C.; Shi, W.D.; Li, W.; Zhang, D.S.; Jiang, X.P. Numerical calculation and verification of the self-priming process of a self-priming irrigation pump. Trans. Chin. Soc. Agric. Eng. 2016, 32, 16. (In Chinese) [Google Scholar]
- Wang, C.; He, X.; Zhang, D.; Hu, B.; Shi, W. Numerical and experimental study of the self-priming process of a multistage self-priming centrifugal pump. Int. J. Energy Res. 2019, 43, 4074–4092. [Google Scholar] [CrossRef]
- Wang, C.; Hu, B.; Zhu, Y.; Wang, X.; Luo, C.; Cheng, L. Numerical study on the gas-water two-phase flow in the self-priming process of self-priming centrifugal pump. Processes 2019, 7, 330. [Google Scholar] [CrossRef]
- Huang, S.; Su, X.; Guo, J.; Yue, L. Unsteady numerical simulation for gas–liquid two-phase flow in self-priming process of centrifugal pump. Energy Convers. Manag. 2014, 85, 694–700. [Google Scholar] [CrossRef]
- Liu, J.R.; Su, Q.Q. Numerical simulation analysis of gas-liquid two-phase flow in a self-priming pump. J. Agric. Mach. 2009, 40, 73–76. (In Chinese) [Google Scholar]
- Qian, H. Transient Flow Characteristics and Self-Priming Performance Influence Mechanism of Gas-Liquid Two-Phase Flow during the Self-Priming Process of a Centrifugal Pump; Zhejiang University of Technology: Hangzhou, China, 2020. (In Chinese) [Google Scholar]
- Shepard, J. Self-priming pumps: An overview. World Pumps 2003, 444, 21–22. [Google Scholar]
- Fan, Z.L.; Li, W.G. Motion of bubbles in an external mixed self-priming pump. Pump Technol. 1991, 4, 9–11. (In Chinese) [Google Scholar]
- Sun, Y.B.; Chen, T.; Wu, D.Z.; Wang, L.Q. Numerical study on matching structures improvement of vertical self-priming pump. IOP Conf. Ser. Earth Environ. Sci. 2012, 15, 072003. [Google Scholar] [CrossRef]
- Sun, Y.B.; Chen, T.; Yang, S.; Wu, D.Z.; Wang, L.Q. Analysis of hydraulic performance and internal structure improvement of vertical self-priming pump. J. Zhejiang Univ. Eng. Sci. 2013, 2, 332–338. (In Chinese) [Google Scholar]
- Li, G.; Wang, Y.; Yin, G.; Cui, Y.; Liang, Q. Investigation of the self-priming process of self-priming pump under gas-liquid two-phase condition. In Proceedings of the Fluids Engineering Division Summer Meeting, Chicago, IL, USA, 3–7 August 2014. [Google Scholar] [CrossRef]
- Liu, Z.C.; Kong, F.Y.; Wang, Y.; Xie, S.F.; Zhao, L.F. Influence of non-uniform blade distribution on pressure pulsation in vortex self-priming pump. J. Drain. Irrig. Mach. Eng. 2017, 35, 2. (In Chinese) [Google Scholar] [CrossRef]
- Kai, W.; Zixu, Z.; Linglin, J.; Liu, H.; Li, Y. Research on unsteady performance of a two-stage self-priming centrifugal pump. J. Vibroeng. 2017, 19, 1732–1744. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Z.; Jiang, L.; Liu, H.; Li, Y. Effects of impeller trim on performance of two-stage self-priming centrifugal pump. Adv. Mech. Eng. 2017, 9, 168781401769249. [Google Scholar] [CrossRef]
- Chang, H.; Li, W.; Shi, W.; Liu, J. Effect of blade profile with different thickness distribution on the pressure characteristics of novel self-priming pump. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 518. [Google Scholar] [CrossRef]
- Chang, H.; Shi, W.; Li, W.; Liu, J. Energy Loss Analysis of Novel Self-Priming Pump Based on the Entropy Production Theory. J. Therm. Sci. 2019, 28, 306–318. [Google Scholar] [CrossRef]
- Mou, J.G.; Wang, H.S.; Wu, D.H.; Ren, Y.; Shi, Z.Z.; Jian, J.; Zhao, L.P. Unsteady study of solid-liquid two-phase flow in a sewage self-priming pump. J. Zhejiang Univ. Technol. 2018, 46, 633–638. (In Chinese) [Google Scholar]
- Mou, J.G.; Wang, H.S.; Wu, D.H.; Ren, Y.; Shi, Z.Z.; Jian, J.; Zhao, L.P. Study on the flow and distribution of solid particles in a sewage self-priming pump. J. Hydropower 2018, 37, 48–57. (In Chinese) [Google Scholar]
- Mou, J.G.; Wu, Z.X.; Zhou, P.J.; Gu, Y.Q.; Wu, D.H.; Ren, Y. Transient flow characteristics inside the volute of a self-priming centrifugal pump. J. Shanghai Jiao Tong Univ. 2018, 4, 461–468. [Google Scholar]
- Wu, D.; Zhu, Z.; Ren, Y.; Gu, Y.; Zhou, P. Influence of blade profile on energy loss of sewage self-priming pump. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 470. [Google Scholar] [CrossRef]
- Zhou, P.; Wu, Z.; Mou, J.; Wu, D.; Zheng, S.; Gu, Y. Effect of reflux hole on the transient flow characteristics of the self-priming sewage centrifugal pump. J. Appl. Fluid Mech. 2019, 12, 689–699. [Google Scholar] [CrossRef]
- Chang, H.; Shi, W.; Li, W.; Wang, C.; Zhou, L.; Liu, J.; Yang, Y.; Ramesh, K.A. Experimental Optimization of Jet Self-Priming Centrifugal Pump Based on Orthogonal Design and Grey-Correlational Method. J. Therm. Sci. 2020, 29, 241–250. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhu, Z.C.; Zhao, Y.J.; Wu, J.; Zhou, F.L. Comparative Experiments on a Self-priming Pump Delivering Water Medium During Rapid and Slow Starting Periods. Iran. J. Sci. Technol. Trans. Mech. Eng. 2021, 45, 1007–1019. [Google Scholar] [CrossRef]
- Wen, H.; Yao, Z.; Zhong, Q.; Tian, Y.; Sun, Y.; Wang, F. Energy partitioning in laser-induced millimeter-sized spherical cavitation up to the fourth oscillation. Ultrason. Sonochem. 2023, 95, 106391. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yao, Z.; Wen, H.; Zhong, Q.; Wang, F. Cavitation bubble collapse in a vicinity of a rigid wall with a gas entrapping hole. Phys. Fluids 2022, 34, 7. [Google Scholar] [CrossRef]
- Zi, D.; He, D.Q.; Yao, Z.F.; Wang, F.J.; Zhong, Q.; Lyu, P. Investigations of the dynamical behaviors of a millimeter-scale cavitation bubble near the rigid wall. J. Hydrodyn. 2023, 35, 1064–1076. [Google Scholar] [CrossRef]
- Supponen, O.; Obreschkow, D.; Kobel, P.; Farhat, M. Luminescence from cavitation bubbles deformed in uniform pressure gradients. Phys. Rev. E 2017, 96, 033114. [Google Scholar] [CrossRef] [PubMed]
- Preso, D.B.; Fuster, A.B.; Sieber, D.; Obreschkow, D.; Farhat, M. Vapor compression and energy dissipation in a collapsing laser-induced bubble. Phys. Fluids 2024, 36, 033601. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, Z.; Wu, H.; Zhong, Q.; Tao, R.; Wang, F. A new turbulent viscosity correction model with URANS solver for unsteady turbulent cavitation flow computations. J. Fluids Eng. 2022, 144, 9. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, P.; Zhou, C.; Zhou, W.; Li, J. Analysis of cavitation-induced vibration characteristics of a vortex pump based on adaptive optimal kernel time-frequency representation. J. Appl. Fluid Mech. 2024, 17, 3. [Google Scholar] [CrossRef]
Model | Advantages | Drawbacks | Momentum Equation |
---|---|---|---|
Euler–Euler model | Suitable for dense phase flows, dealing with large-scale flows and long-time simulations in multiphase flows | Difficulty in accurately describing interphase interfaces and details and poor flow in sparse phases | |
Mixture model | Computationally efficient, suitable for dealing with large-scale flow fields, and the model is relatively simple and easy to implement and calculate | Lower accuracy for flows with well-defined interfaces (e.g., large particles or droplets), which do not allow detailed capture of the shape or evolution of the interphase interface | |
Volume of fluid model | Capable of accurately capturing complex interfacial patterns such as waves, bubble bursting, and droplet formation | Calculations are complex, interface tracking requires high precision, and dealing with interphase mass transfer and phase transition phenomena are more complicated |
Items | Symbol | Expression |
---|---|---|
Drag | ||
Lift | ||
Turbulent dispersion force | ||
Added mass force | ||
Magnus force | ||
Basset force | ||
Staffman force | ||
Inertia force | ||
Pressure difference force |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, H.; Zhao, H.; Xiang, C.; Duan, Z.; Zhang, S.; Zhou, P. Progress on Numerical Simulation of Gas-Liquid Two-Phase Flow in Self-Priming Pump. Atmosphere 2024, 15, 953. https://doi.org/10.3390/atmos15080953
Qian H, Zhao H, Xiang C, Duan Z, Zhang S, Zhou P. Progress on Numerical Simulation of Gas-Liquid Two-Phase Flow in Self-Priming Pump. Atmosphere. 2024; 15(8):953. https://doi.org/10.3390/atmos15080953
Chicago/Turabian StyleQian, Heng, Hongbo Zhao, Chun Xiang, Zhenhua Duan, Sanxia Zhang, and Peijian Zhou. 2024. "Progress on Numerical Simulation of Gas-Liquid Two-Phase Flow in Self-Priming Pump" Atmosphere 15, no. 8: 953. https://doi.org/10.3390/atmos15080953
APA StyleQian, H., Zhao, H., Xiang, C., Duan, Z., Zhang, S., & Zhou, P. (2024). Progress on Numerical Simulation of Gas-Liquid Two-Phase Flow in Self-Priming Pump. Atmosphere, 15(8), 953. https://doi.org/10.3390/atmos15080953