Assimilating Satellite-Derived Snow Cover and Albedo Data to Improve 3-D Weather and Photochemical Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Analysis Methods
2.4. Re-Gridding MODIS Data to the WRF Model Domain
2.5. Determining Diurnal Surface Albedo from the MODIS MCD43A1 Dataset
2.6. WRF Model Configurations
2.7. CAMx Model Configurations
2.8. Implementation of MODIS Data Assimilation to the WRF/CAMx Model Platform
2.8.1. WRF Model Modification
2.8.2. CAMx Model Modification
3. Results
3.1. Impact of MODIS Data Assimilation on WRF Model Performance
3.2. Impact of MODIS Data Assimilation on CAMx Model Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USEPA. Ground-Level Ozone Pollution. Available online: https://www.epa.gov/ground-level-ozone-pollution (accessed on 20 September 2023).
- USEPA. Guidance on the Use of Models and Other Analyses in Attainment Demonstrations for the 8-Hour Ozone NAAQS; EPA-454/R-05-002; USEPA: Washington, DC, USA, 2005.
- USEPA. National Ambient Air Quality Standards for Ozone Final Rule; Environmental Protection Agency: Washington, DC, USA, 2015; pp. 1–178.
- McCarthy, J.E.; Shouse, K.C. Implementing EPA’s 2015 ozone air quality standards. CRS Rep. 2018, 43092. [Google Scholar]
- Oltmans, S.; Schnell, R.; Johnson, B.; Pétron, G.; Mefford, T.; Neely, R., III. Anatomy of wintertime ozone associated with oil and natural gas extraction activity in Wyoming and Utah. Elementa 2014, 2, 000024. [Google Scholar] [CrossRef]
- Edwards, P.M.; Brown, S.S.; Roberts, J.M.; Ahmadov, R.; Banta, R.M.; DeGouw, J.A.; Dubé, W.P.; Field, R.A.; Flynn, J.H.; Gilman, J.B. High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature 2014, 514, 351–354. [Google Scholar] [CrossRef]
- Lyman, S.; Tran, T. Inversion structure and winter ozone distribution in the Uintah Basin, Utah, USA. Atmos. Environ. 2015, 123, 156–165. [Google Scholar] [CrossRef]
- USEPA. Controlling Air Pollution from the Oil and Naturual Gas Industry. Available online: https://www.epa.gov/controlling-air-pollution-oil-and-natural-gas-industry (accessed on 6 August 2024).
- USEPA. Controlling Air Pollution from Oil and Natural Gas Operations. Available online: https://www.epa.gov/controlling-air-pollution-oil-and-natural-gas-operations (accessed on 19 May 2024).
- Roth, P.M.; Reynolds, S.D.; Tesche, T.W. Air Quality Modeling and Decisions for Ozone Reduction Strategies. J. Air Waste Manag. Assoc. 2005, 55, 1558–1573. [Google Scholar] [CrossRef]
- Neemann, E.M.; Crosman, E.T.; Horel, J.D.; Avey, L. Simulations of a cold-air pool associated with elevated wintertime ozone in the Uintah Basin, Utah. Atmos. Chem. Phys. 2015, 15, 135–151. [Google Scholar] [CrossRef]
- Matichuk, R.; Tonnesen, G.; Luecken, D.; Gilliam, R.; Napelenok, S.L.; Baker, K.R.; Schwede, D.; Murphy, B.; Helmig, D.; Lyman, S.N. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin. J. Geophys. Res. Atmos. 2017, 122, 13545–13572. [Google Scholar] [CrossRef]
- Tran, T.; Tran, H.; Mansfield, M.; Lyman, S.; Crosman, E. Four dimensional data assimilation (FDDA) impacts on WRF performance in simulating inversion layer structure and distributions of CMAQ-simulated winter ozone concentrations in Uintah Basin. Atmos. Environ. 2018, 177, 75–92. [Google Scholar] [CrossRef]
- Werner, M.; Kryza, M.; Guzikowski, J. Can Data Assimilation of Surface PM2.5 and Satellite AOD Improve WRF-Chem Forecasting? A Case Study for Two Scenarios of Particulate Air Pollution Episodes in Poland. Remote Sens. 2019, 11, 2364. [Google Scholar] [CrossRef]
- Ghude, S.D.; Kumar, R.; Jena, C.; Debnath, S.; Kulkarni, R.G.; Alessandrini, S.; Biswas, M.; Kulkrani, S.; Pithani, P.; Kelkar, S. Evaluation of PM2. 5 forecast using chemical data assimilation in the WRF-Chem model: A novel initiative under the Ministry of Earth Sciences Air Quality Early Warning System for Delhi, India. Curr. Sci 2020, 118, 1803–1815. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Davis, C.; Gu, Y. Dust radiative effects on atmospheric thermodynamics and tropical cyclogenesis over the Atlantic Ocean using WRF-Chem coupled with an AOD data assimilation system. Atmos. Chem. Phys. 2017, 17, 7917–7939. [Google Scholar] [CrossRef]
- Parajuli, S.P.; Yang, Z.-L.; Lawrence, D.M. Diagnostic evaluation of the Community Earth System Model in simulating mineral dust emission with insight into large-scale dust storm mobilization in the Middle East and North Africa (MENA). Aeolian Res. 2016, 21, 21–35. [Google Scholar] [CrossRef]
- Endale, T.A.; Raba, G.A.; Beketie, K.T.; Feyisa, G.L. Exploring the Trend of Aerosol Optical Depth and its Implication on Urban Air Quality Using Multi-spectral Satellite Data During the Period from 2009 to 2020 over Dire Dawa, Ethiopia. Nat. Environ. Pollut. Technol. 2024, 23, 1–15. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Zupanski, M.; Hou, A.Y.; Lin, X.; Cheung, S.H. Assimilation of Precipitation-Affected Radiances in a Cloud-Resolving WRF Ensemble Data Assimilation System. Mon. Weather. Rev. 2013, 141, 754–772. [Google Scholar] [CrossRef]
- Paul, S.; Ghosh, S.; Oglesby, R.; Pathak, A.; Chandrasekharan, A.; Ramsankaran, R. Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci. Rep. 2016, 6, 32177. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Lyu, S.; Zhang, T.; Zhao, L.; Li, Z.; Han, B.; Li, S.; Ma, D.; Chen, H.; Ao, Y.; et al. Simulated cold bias being improved by using MODIS time-varying albedo in the Tibetan Plateau in WRF model. Environ. Res. Lett. 2018, 13, 044028. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, H.M. Effect of data assimilation in the Polar WRF with 3DVAR on the prediction of radiation, heat flux, cloud, and near surface atmospheric variables over Svalbard. Atmos. Res. 2022, 272, 106155. [Google Scholar] [CrossRef]
- Ran, L.; Gilliam, R.; Binkowski, F.S.; Xiu, A.; Pleim, J.; Band, L. Sensitivity of the Weather Research and Forecast/Community Multiscale Air Quality modeling system to MODIS LAI, FPAR, and albedo. J. Geophys. Res. Atmos. 2015, 120, 8491–8511. [Google Scholar] [CrossRef]
- Ran, L.; Pleim, J.; Gilliam, R.; Binkowski, F.S.; Hogrefe, C.; Band, L. Improved meteorology from an updated WRF/CMAQ modeling system with MODIS vegetation and albedo. J. Geophys. Res. Atmos. 2016, 121, 2393–2415. [Google Scholar] [CrossRef]
- Ran, L.; Pleim, J.; Song, C.; Band, L.; Walker, J.T.; Binkowski, F.S. A photosynthesis-based two-leaf canopy stomatal conductance model for meteorology and air quality modeling with WRF/CMAQ PX LSM. J. Geophys. Res. Atmos. 2017, 122, 1930–1952. [Google Scholar] [CrossRef]
- NASA. MODIS Design. Available online: https://modis.gsfc.nasa.gov/about/design.php (accessed on 1 November 2023).
- Schaaf, C.W.Z. MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global–500 m V061. NASA EOSDIS Land Processes DAAC. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD43A1 (accessed on 1 November 2023).
- Lyapustin, A.W.Y. MCD19A1 MODIS/Terra+Aqua Land Surface BRF Daily L2G Global 500 m, 1 km and 10 km SIN Grid. NASA LP DAAC. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD19A1 (accessed on 1 November 2023).
- Lyapustin, A.W.Y. MCD19A2 MODIS/Terra+Aqua Aerosol Optical Thickness Daily L2G Global 1 km SIN Grid. NASA LP DAAC. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD19A2 (accessed on 1 November 2023).
- Hall, D. MOD10A1/MYD10A1 Snow Products. Available online: https://modis-snow-ice.gsfc.nasa.gov/?c=MOD10A1 (accessed on 1 November 2023).
- Myneni, R.K.; Taejin, P. MOD15A3H MODIS/Combined Terra+Aqua Leaf Area Index/FPAR Daily L4 Global 500 m SIN Grid. NASA LP DAAC. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD15A3H (accessed on 1 November 2023).
- Vermote, E.; Tanré, D.; Deuzé, J.; Herman, M.; Morcrette, J.; Kotchenova, S. Second Simulation of a Satellite Signal in the Solar Spectrum–Vector. 6SV, 6S User Guide Version 3. 2006. Available online: https://ltdri.org/files/6S/6S_Manual_Part_1.pdf (accessed on 1 November 2023).
- Mansfield, M.; Tran, H.; Tran, T. 2017 ARMS—Photochemical Grid Model Performance Evaluation for Base Year 2011; Technical Report; Bureau of Land Management Utah Office, Utah State University—Bingham Research Center: Vernal, UT, USA, 2020; p. 66. [Google Scholar]
- Helmig, D.; Ganzeveld, L.; Butler, T.; Oltmans, S.J. The role of ozone atmosphere-snow gas exchange on polar, boundary-layer tropospheric ozone—A review and sensitivity analysis. Atmos. Chem. Phys. 2007, 7, 15–30. [Google Scholar] [CrossRef]
- National Operational Hydrologic Remote Sensing Center. Snow Data Assimilation System (SNODAS) Data Products at NSIDC, Version 1; National Snow and Ice Data Center: Boulder, CO, USA, 2004. [Google Scholar] [CrossRef]
Dataset | Reference | Descriptions | Horizontal Resolution | Temporal Resolution |
---|---|---|---|---|
MCD43A1 | Schaaf [27] | MODIS Terra + Aqua BRDF/Albedo Model Parameters Daily L3 Global—500 m V006 | 500 m | Daily |
MCD19A1 | Lyapustin [28] | MODIS Terra + Aqua Land Surface BRF Daily L2G Global 500 m, 1 km and 10 km S.I.N. Grid V006 | 500 m | Daily |
MCD19A2 | Lyapustin [29] | MODIS Terra + Aqua Land Aerosol Optical Thickness Daily L2G Global 1 km S.I.N. Grid V006 | 1 km | Daily |
MOD10A1/MYD10A1 | Hall [30] | MODIS Terra + Aqua Snow Cover Daily L3 Global 500 m Grid. Only MOD10A1 is used | 500 m | Daily |
MCD15A3H | Myneni [31] | MODIS Terra + Aqua Leaf Area Index/FPAR 4-Day L4 Global 500 m (4 days composite) | 500 m | Daily |
Parameters | Values | Descriptions |
---|---|---|
Atmospheric profile | 3 | Midlatitude winter |
Aerosol model | 1 | Continental model |
Sensor level | 1000 km | Set to satellite altitude |
Ground reflectance type | 0 | Homogenous surface |
Directional effect | 1 | Directional effect is considered |
Directional effect model | 10 | MODIS operational BDRF |
Weigh factors for MODIS BDRF | 1.0, 0.77, 0.2 | Weights for Lambertian kernel, RossThick kernel, LiSparse kernel in MODIS BDRF |
Atmospheric correction mode | −1 | No atmospheric correction |
Parameter Name | Parameter Value |
---|---|
Projection | Lambert conformal |
Reference latitude | 40 N |
Reference longitude | −97 W |
truelat1 | 33 |
truelat2 = | 45 |
stand_lon = | −97 |
ref_x | 190.5 |
ref_y | 90.5 |
Domain 1 | Domain 2 | Domain 3 | |
---|---|---|---|
Grid size (x, y) | 201 × 191 | 253 × 253 | 298 × 322 |
Vertical levels | 37 | 37 | 37 |
Vertical coordinates | Terrain-following Eta (non-hybrid) | Terrain-following Eta (non-hybrid) | Terrain-following Eta (non-hybrid) |
Vertical grid spacing | 12–16 m in boundary layer | 12–16 m in boundary layer | 12–16 m in boundary layer |
Horizontal resolution (km) | 12 | 4 | 1.33 |
Model time step (s) | 25 | 8.33 | 2.77 |
Topographic dataset | USGS GTOPO30 | USGS GTOPO30 | USGS GTOPO30 |
Land use dataset | NLCD2011 modified 9s | NLCD2011 modified 9s | NLCD2011 modified 9s |
Initial and boundary conditions | N.A.M.-12 km | Continuous updates nested from 12 km domain | Continuous updates nested from 4 km domain |
Top and bottom boundary conditions | - Top: Rayleigh dampening for the vertical velocity - Bottom: physical, non free-slip option | - Top: Rayleigh dampening for the vertical velocity - Bottom: physical, non free-slip option | - Top: Rayleigh dampening for the vertical velocity - Bottom: physical, non free-slip option |
Veg parm table variables modified for winter simulations | SNUP, MAXALB | SNUP, MAXALB | SNUP, MAXALB |
Snow cover initialization | - SNODAS | - SNODAS | - SNODAS |
WRF Treatment | Option Selected |
---|---|
Microphysics | Thompson |
Longwave Radiation | RRTMG |
Shortwave Radiation | RRTMG |
Land Surface Model (LSM) | NOAH |
Planetary Boundary Layer (PBL) Scheme | MYJ |
Cumulus Parameterization | Kain–Fritsch in the 12 km domains. None in the 4 and 1.3 km domain. |
Science Options | Configuration |
---|---|
Model Code Version | CAMx V6.5 |
Horizontal Grid | 1.33 km (298 × 322) |
Vertical Grid | 25 vertical layers |
Initial and Boundary Conditions | Processed from ARMS2017 |
Boundary Conditions | 12 km BCs from WAQS 2011b |
Land-Use Data | Land-use fields from meteorological model |
Photolysis Rate Preprocessor | TUV V4.8 (Clear sky photolysis rates from TOMS data) |
Gas-Phase Chemistry | CB6r4 |
Aerosol Phase | CF (coarse- and fine-mode aerosols) |
Diffusion Scheme | |
Horizontal Grid | Explicit horizontal diffusion |
Vertical Grid | K-theory 1st-order closure |
Deposition Scheme | |
Dry Deposition | ZHANG03 with modifications based on [34] |
Wet Deposition | CAMx-specific formulation |
Numerical Solvers | |
Gas-phase Chemistry | Euler Backward Iterative (E.B.I.) solver |
Horizontal Advection | Piecewise Parabolic Method (P.P.M.) |
Vertical Advection | Implicit scheme with vertical velocity update |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, C.; Tran, H.; Tran, T.; Lyman, S. Assimilating Satellite-Derived Snow Cover and Albedo Data to Improve 3-D Weather and Photochemical Models. Atmosphere 2024, 15, 954. https://doi.org/10.3390/atmos15080954
Jones C, Tran H, Tran T, Lyman S. Assimilating Satellite-Derived Snow Cover and Albedo Data to Improve 3-D Weather and Photochemical Models. Atmosphere. 2024; 15(8):954. https://doi.org/10.3390/atmos15080954
Chicago/Turabian StyleJones, Colleen, Huy Tran, Trang Tran, and Seth Lyman. 2024. "Assimilating Satellite-Derived Snow Cover and Albedo Data to Improve 3-D Weather and Photochemical Models" Atmosphere 15, no. 8: 954. https://doi.org/10.3390/atmos15080954
APA StyleJones, C., Tran, H., Tran, T., & Lyman, S. (2024). Assimilating Satellite-Derived Snow Cover and Albedo Data to Improve 3-D Weather and Photochemical Models. Atmosphere, 15(8), 954. https://doi.org/10.3390/atmos15080954