Influence of Time–Activity Patterns on Indoor Air Quality in Italian Restaurant Kitchens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Video Analysis
- service phases (i.e., pre-service, service and post-service);
- stove ignition;
- cooking methods (i.e., boiling, grilling and frying);
- switch on and use of ovens;
- handwashing using detergents;
- time with the dishwasher on;
- time spent in cleaning surfaces (i.e., countertops, floors and windows).
2.3. Statistical Analysis
3. Results
3.1. Quantitative Impact of Specific Activities on IAQ
- cooking: differentiation was made between the various cooking methods identified from video observations, namely boiling, grilling and frying;
- washing: these were investigated more in depth by distinguishing between handwashing and automatic dishwashing;
- surface cleaning.
3.2. Short-Term and Real-Time Contamination Trends
4. Discussion
4.1. Impact of Activities on IAQ
4.2. Temporal Analysis
4.3. Strengths and Weaknesses
5. Conclusions
- -
- Cooking and also washing and cleaning activities played a key role in affecting the IAQ in professional kitchens.
- -
- Cooking activities had a significantly impact on the IAQ, especially in the winter, mainly for UFPs, NO2, the TVOCs and HCHO. In particular, UFPs in the kitchens were notably high in the winter (median level of 32.500 and higher than 80.000 pt/cm3 while frying), nearly tripled with respect to the summer (11.700 pt/cm3) (Table S1 and Figure S8).
- -
- Washing activities exerted a statistically significant impact on the TVOC and HCHO indoor concentrations in both seasons. The relevance of washing and cleaning became more evident in the winter, when windows were closed, leading to a 50–61% increase in the TVOC concentrations and a 50–75% increase in HCHO concentrations during kitchen surface cleaning compared to cooking (Table 2 and Table 4).
- -
- Specific events, such as the opening of the dishwasher, were strongly correlated with short-term peaks of TVOCs and UFPs (Figure 2).
- -
- A time-dependent relationship between O3 and UFPs, TVOCs and sometimes also HCHO was observed in some restaurants, probably due to the occurrence of ozonolysis reactions (Figure 2).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Ho, S.S.H.; Ho, K.F.; Lee, S.C.; Yu, J.Z.; Louie, P.K.K. Characteristics and Health Impacts of VOCs and Carbonyls Associated with Residential Cooking Activities in Hong Kong. J. Haz. Mater. 2011, 186, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-Y.; Park, H.; Seo, Y.; Yun, J.; Kwon, J.; Park, K.-W.; Han, S.-B.; Oh, K.C.; Jeon, J.-M.; Cho, K.-S. Emission Characteristics of Particulate Matter, Odors, and Volatile Organic Compounds from the Grilling of Pork. Environ. Res. 2020, 183, 109162. [Google Scholar] [CrossRef]
- Peng, C.-Y.; Lan, C.-H.; Lin, P.-C.; Kuo, Y.-C. Effects of Cooking Method, Cooking Oil, and Food Type on Aldehyde Emissions in Cooking Oil Fumes. J. Haz. Mater. 2017, 324, 160–167. [Google Scholar] [CrossRef]
- Chiang, T.-A.; Wu, P.-F.; Ko, Y.-C. Identification of Carcinogens in Cooking Oil Fumes. Environ. Res. 1999, 81, 18–22. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Kuo, Y.-C.; Wang, S.-M.; Wu, K.-R.; Chen, Y.-C.; Tsai, P.-J. Techniques for Predicting Exposures to Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Cooking Processes for Cooking Workers. Aerosol Air Qual. Res. 2019, 19, 307–317. [Google Scholar] [CrossRef]
- Seaman, V.Y.; Bennett, D.H.; Cahill, T.M. Indoor Acrolein Emission and Decay Rates Resulting from Domestic Cooking Events. Atmos. Environ. 2009, 43, 6199–6204. [Google Scholar] [CrossRef]
- Wolkoff, P.; Nielsen, G.D. Non-Cancer Effects of Formaldehyde and Relevance for Setting an Indoor Air Guideline. Environ. Int. 2010, 36, 788–799. [Google Scholar] [CrossRef]
- Meininghaus, R. Risk Assessment of Sensory Irritants in Indoor Air—A Case Study in a French School. Environ. Int. 2003, 28, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Rovelli, S.; Cattaneo, A.; Fazio, A.; Spinazzè, A.; Borghi, F.; Campagnolo, D.; Dossi, C.; Cavallo, D.M. VOCs Measurements in Residential Buildings: Quantification via Thermal Desorption and Assessment of Indoor Concentrations in a Case-Study. Atmosphere 2019, 10, 57. [Google Scholar] [CrossRef]
- Campagnolo, D.; Saraga, D.E.; Cattaneo, A.; Spinazzè, A.; Mandin, C.; Mabilia, R.; Perreca, E.; Sakellaris, I.; Canha, N.; Mihucz, V.G.; et al. VOCs and Aldehydes Source Identification in European Office Buildings—The OFFICAIR Study. Build. Environ. 2017, 115, 18–24. [Google Scholar] [CrossRef]
- Kumar, P.; Martani, C.; Morawska, L.; Norford, L.; Choudhary, R.; Bell, M.; Leach, M. Indoor Air Quality and Energy Management through Real-Time Sensing in Commercial Buildings. Energy Build. 2016, 111, 145–153. [Google Scholar] [CrossRef]
- Ródenas García, M.; Spinazzé, A.; Branco, P.T.B.S.; Borghi, F.; Villena, G.; Cattaneo, A.; Di Gilio, A.; Mihucz, V.G.; Gómez Álvarez, E.; Lopes, S.I.; et al. Review of Low-Cost Sensors for Indoor Air Quality: Features and Applications. Appl. Spectrosc. Rev. 2022, 57, 747–779. [Google Scholar] [CrossRef]
- Alves, C.A.; Vicente, E.D.; Evtyugina, M.; Vicente, A.M.P.; Sainnokhoi, T.-A.; Kováts, N. Cooking Activities in a Domestic Kitchen: Chemical and Toxicological Profiling of Emissions. Sci. Total Environ. 2021, 772, 145412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Bai, Z.; Shi, L.; Son, J.H.; Li, L.; Wang, L.; Chen, J. Investigating Aldehyde and Ketone Compounds Produced from Indoor Cooking Emissions and Assessing Their Health Risk to Human Beings. J. Environ. Sci. 2023, 127, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Andersen, P.C.; Williford, C.J.; Birks, J.W. Miniature Personal Ozone Monitor Based on UV Absorbance. Anal. Chem. 2010, 82, 7924–7928. [Google Scholar] [CrossRef]
- Black, D.R.; Harley, R.A.; Hering, S.V.; Stolzenburg, M.R. A New, Portable, Real-Time Ozone Monitor. Environ. Sci. Technol. 2000, 34, 3031–3040. [Google Scholar] [CrossRef]
- Deville Cavellin, L.; Weichenthal, S.; Tack, R.; Ragettli, M.S.; Smargiassi, A.; Hatzopoulou, M. Investigating the Use Of Portable Air Pollution Sensors to Capture the Spatial Variability Of Traffic-Related Air Pollution. Environ. Sci. Technol. 2016, 50, 313–320. [Google Scholar] [CrossRef]
- Lin, C.; Gillespie, J.; Schuder, M.D.; Duberstein, W.; Beverland, I.J.; Heal, M.R. Evaluation and Calibration of Aeroqual Series 500 Portable Gas Sensors for Accurate Measurement of Ambient Ozone and Nitrogen Dioxide. Atmos. Environ. 2015, 100, 111–116. [Google Scholar] [CrossRef]
- McGill, G.; Oyedele, L.O.; McAllister, K. Case Study Investigation of Indoor Air Quality in Mechanically Ventilated and Naturally Ventilated UK Social Housing. Int. J. Sust. Built Environ. 2015, 4, 58–77. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, N.; Kuhn, T.; Hinds, W.C. Field Comparison of P-Trak and Condensation Particle Counters. Aerosol Sci. Technol. 2006, 40, 422–430. [Google Scholar] [CrossRef]
- Duvall, R.; Long, R.; Beaver, M.; Kronmiller, K.; Wheeler, M.; Szykman, J. Performance Evaluation and Community Application of Low-Cost Sensors for Ozone and Nitrogen Dioxide. Sensors 2016, 16, 1698. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Aleixandre, M. Performance Evaluation of Amperometric Sensors for the Monitoring of O3 and NO2 in Ambient Air at Ppb Level. Procedia Eng. 2015, 120, 480–483. [Google Scholar] [CrossRef]
- Huang, K.; Song, J.; Feng, G.; Chang, Q.; Jiang, B.; Wang, J.; Sun, W.; Li, H.; Wang, J.; Fang, X. Indoor Air Quality Analysis of Residential Buildings in Northeast China Based on Field Measurements and Longtime Monitoring. Build. Environ. 2018, 144, 171–183. [Google Scholar] [CrossRef]
- Gilden, R.C.; Friedmann, E.J.; Spanier, A.J.; Hennigan, C.J. Indoor Air Quality Monitoring in Baltimore City, MD Head Start Centers. Int. J. Environ. Sci. Technol. 2022, 19, 11523–11530. [Google Scholar] [CrossRef]
- Flueckiger, J.; Ko, F.K.; Cheung, K.C. Microfabricated Formaldehyde Gas Sensors. Sensors 2009, 9, 9196–9215. [Google Scholar] [CrossRef]
- Boniardi, L.; Borghi, F.; Straccini, S.; Fanti, G.; Campagnolo, D.; Campo, L.; Olgiati, L.; Lioi, S.; Cattaneo, A.; Spinazzè, A.; et al. Commuting by Car, Public Transport, and Bike: Exposure Assessment and Estimation of the Inhaled Dose of Multiple Airborne Pollutants. Atmos. Environ. 2021, 262, 118613. [Google Scholar] [CrossRef]
- Feltovich, N. Nonparametric Tests of Differences in Medians: Comparison of the Wilcoxon–Mann–Whitney and Robust Rank-Order Tests. Exp. Econ. 2003, 6, 273–297. [Google Scholar] [CrossRef]
- Emerson, R.W. Bonferroni Correction and Type I Error. J. Vis. Impair. Blind. 2020, 114, 77–78. [Google Scholar] [CrossRef]
- Amouei Torkmahalleh, M.; Gorjinezhad, S.; Unluevcek, H.S.; Hopke, P.K. Review of Factors Impacting Emission/Concentration of Cooking Generated Particulate Matter. Sci. Total Environ. 2017, 586, 1046–1056. [Google Scholar] [CrossRef]
- Wang, L.; Xiang, Z.; Stevanovic, S.; Ristovski, Z.; Salimi, F.; Gao, J.; Wang, H.; Li, L. Role of Chinese Cooking Emissions on Ambient Air Quality and Human Health. Sci. Total Environ. 2017, 589, 173–181. [Google Scholar] [CrossRef]
- See, S.W.; Balasubramanian, R. Chemical Characteristics of Fine Particles Emitted from Different Gas Cooking Methods. Atmos. Environ. 2008, 42, 8852–8862. [Google Scholar] [CrossRef]
- Atamaleki, A.; Motesaddi Zarandi, S.; Massoudinejad, M.; Hesam, G.; Naimi, N.; Esrafili, A.; Fakhri, Y.; Mousavi Khaneghah, A. Emission of Aldehydes from Different Cooking Processes: A Review Study. Air Qual. Atmos. Health 2022, 15, 1183–1204. [Google Scholar] [CrossRef]
- Bassam, S.M.; Noleto-Dias, C.; Farag, M.A. Dissecting Grilled Red and White Meat Flavor: Its Characteristics, Production Mechanisms, Influencing Factors and Chemical Hazards. Food Chem. 2022, 371, 131139. [Google Scholar] [CrossRef]
- Takhar, M.; Li, Y.; Ditto, J.C.; Chan, A.W.H. Formation Pathways of Aldehydes from Heated Cooking Oils. Environ. Sci. Process. Impacts 2023, 25, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Poppendieck, D.; Gong, M. Simmering Sauces! Elevated Formaldehyde Concentrations from Gas Stove Burners; Indoor Air: Philadelphia, PA, USA, 2018. [Google Scholar]
- Kim, S.; Hong, S.-H.; Bong, C.-K.; Cho, M.-H. Characterization of Air Freshener Emission: The Potential Health Effects. J. Toxicol. Sci. 2015, 40, 535–550. [Google Scholar] [CrossRef]
- Dennekamp, M.; Howarth, S.; Dick, C.A.J.; Cherrie, J.W.; Donaldson, K.; Seaton, A. Ultrafine Particles and Nitrogen Oxides Generated by Gas and Electric Cooking. Occup. Environ. Med. 2001, 58, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef]
- Gómez Alvarez, E.; Sörgel, M.; Gligorovski, S.; Bassil, S.; Bartolomei, V.; Coulomb, B.; Zetzsch, C.; Wortham, H. Light-Induced Nitrous Acid (HONO) Production from NO2 Heterogeneous Reactions on Household Chemicals. Atmos. Environ. 2014, 95, 391–399. [Google Scholar] [CrossRef]
- Xu, C.; Chen, J.; Zhang, X.; Cai, K.; Chen, C.; Xu, B. Emission Characteristics and Quantitative Assessment of the Health Risks of Cooking Fumes during Outdoor Barbecuing. Environ. Pollut. 2023, 323, 121319. [Google Scholar] [CrossRef]
- Ling, Z.H.; Zhao, J.; Fan, S.J.; Wang, X.M. Sources of Formaldehyde and Their Contributions to Photochemical O3 Formation at an Urban Site in the Pearl River Delta, Southern China. Chemosphere 2017, 168, 1293–1301. [Google Scholar] [CrossRef]
- Xiang, J.; Hao, J.; Austin, E.; Shirai, J.; Seto, E. Characterization of Cooking-Related Ultrafine Particles in a US Residence and Impacts of Various Intervention Strategies. Sci. Total Environ. 2021, 798, 149236. [Google Scholar] [CrossRef]
- Buonanno, G.; Stabile, L.; Morawska, L.; Russi, A. Children Exposure Assessment to Ultrafine Particles and Black Carbon: The Role of Transport and Cooking Activities. Atmos. Environ. 2013, 79, 53–58. [Google Scholar] [CrossRef]
- Wong, T.W. Household Gas Cooking: A Risk Factor for Respiratory Illnesses in Preschool Children. Arch. Dis. Child. 2004, 89, 631–636. [Google Scholar] [CrossRef]
- Li, Y.; Ou, J.; Huang, C.; Liu, F.; Ou, S.; Zheng, J. Chemistry of Formation and Elimination of Formaldehyde in Foods. Trends Food Sci. Technol. 2023, 139, 104134. [Google Scholar] [CrossRef]
- Dinh, T.-V.; Kim, S.-Y.; Son, Y.-S.; Choi, I.-Y.; Park, S.-R.; Sunwoo, Y.; Kim, J.-C. Emission Characteristics of VOCs Emitted from Consumer and Commercial Products and Their Ozone Formation Potential. Environ. Sci. Pollut. Res. 2015, 22, 9345–9355. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Weschler, C.J.; Han, I.-K.; Zhang, J. (Jim) Co-Formation of Hydroperoxides and Ultra-Fine Particles during the Reactions of Ozone with a Complex VOC Mixture under Simulated Indoor Conditions. Atmos. Environ. 2005, 39, 5171–5182. [Google Scholar] [CrossRef]
- Dons, E.; Laeremans, M.; Orjuela, J.P.; Avila-Palencia, I.; de Nazelle, A.; Nieuwenhuijsen, M.; Van Poppel, M.; Carrasco-Turigas, G.; Standaert, A.; De Boever, P.; et al. Transport most likely to cause air pollution peak exposures in everyday life: Evidence from over 2000 days of personal monitoring. Atmos. Environ. 2019, 213, 424–432. [Google Scholar] [CrossRef]
- Chojer, H.; Branco, P.T.B.S.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Sousa, S.I.V. Can data reliability of low-cost sensor devices for indoor air particulate matter monitoring be improved? —An approach using machine learning. Atmos. Environ. 2022, 286, 119251. [Google Scholar] [CrossRef]
Pollutant | Instrument | Brand | Technology | Range | Limit of Detection (LOD) | Literature Reference |
---|---|---|---|---|---|---|
Ozone (O3) | POM (Personal Ozone Monitor) | 2B Technologies | UV absorbance | 0 ppb–10 ppm | 0.003 ppm | [15,16] |
TVOCs * | Aeroqual monitor Series 500 | Aeroqual Auckland New Zealand | Photoionization detector (PID) | 0–20 ppm | 0.01 ppm | [17,18] |
Formaldehyde (HCHO) | HAL-HFX205 | Hal Technology, Fontana, CA, USA | Electrochemical sensing technology | 0–10 ppmv | 0.01 ppmv | [19] |
Ultrafine particles (UFPs) | P-Trak 8525 | TSI Incorporated, Shoreview, MN, USA | Condensation Particle Counter (CPC) | 0–105 particles/cm3 | 0.02–1 µm ** | [20] |
Nitrogen dioxide (NO2) | CairClip monitor | Cairpol; La Roche Blanche, France | Electrochemical sensor | 0–250 ppb | 1.692 μg/m3 | [21,22] |
Carbon dioxide (CO2) *** | Telaire 7001 | GE sensing, Goleta, CA, USA | Non-dispersive infrared (NDIR) sensor | 0–10,000 ppm | 1 ppm | [23] |
Temperature (T) and Relative Humidity (RH) | Hobo U12 | Onset Computer Corporation, Bourne, MA, USA | Internal sensors | −20 °C to +70 °C 5–95% | N.A. |
TVOCs in Winter | Boiling | Grilling | Frying | Handwashing | Dishwasher Running |
---|---|---|---|---|---|
grilling | −26% (p < 0.001) | ||||
frying | (p = 0.7) | +22% (p < 0.001) | |||
handwashing | +6% (p < 0.05) | +26% (p < 0.001) | (p = 0.1) | ||
dishwasher running | +6% (p < 0.05) | +26% (p < 0.001) | (p = 0.4) | (p = 0.4) | |
surface cleaning | +50% (p < 0.001) | +61% (p < 0.001) | +50% (p < 0.001) | +47% (p < 0.001) | +47% (p < 0.001) |
TVOCs in Summer | Boiling | Grilling | Frying | Handwashing | Dishwasher Running |
---|---|---|---|---|---|
grilling | −41% (p < 0.001) | ||||
frying | −46% (p < 0.001) | (p = 0.9) | |||
handwashing | −13% (p < 0.001) | +49% (p < 0.001) | +51% (p < 0.001) | ||
dishwasher running | −18% (p < 0.01) | +28% (p < 0.001) | +31% (p < 0.001) | −29% (p < 0.001) | |
surface cleaning | −41% (p < 0.05) | (p = 0.9) | (p = 0.9) | −49% (p < 0.01) | (p = 0.1) |
HCHO in Winter | Boiling | Grilling | Frying | Handwashing | Dishwasher Running |
---|---|---|---|---|---|
grilling | −50% (p < 0.001) | ||||
frying | (p = 0.8) | +50% (p < 0.01) | |||
handwashing | +33% (p < 0.001) | +67% (p < 0.001) | +33% (p < 0.001) | ||
dishwasher running | +33% (p < 0.001) | +67% (p < 0.001) | +33% (p < 0.01) | +16% (p < 0.001) | |
surface cleaning | +47% (p < 0.01) | +75% (p < 0.001) | +50% (p < 0.001) | (p = 0.9) | (p = 0.2) |
HCHO in Summer | Boiling | Grilling | Frying | Handwashing | Dishwasher Running |
---|---|---|---|---|---|
grilling | −10% (p < 0.001) | ||||
frying | −16% (p < 0.01) | (p = 0.5) | |||
handwashing | (p = 0.1) | +62% (p < 0.001) | +64% (p < 0.001) | ||
dishwasher running | (p = 0.2) | (p = 0.06) | +42% (p < 0.05) | −38% (p < 0.01) | |
surface cleaning | −22% (p < 0.001) | −18% (p < 0.01) | (p = 0.07) | −49% (p < 0.001) | −38% (p < 0.001) |
NO2 in Winter | Boiling | Grilling | Frying | Handwashing | Dishwasher Running |
---|---|---|---|---|---|
grilling | +22% (p < 0.001) | ||||
frying | +67% (p < 0.001) | +57% (p < 0.001) | |||
handwashing | (p = 0.4) | −22% (p < 0.001) | −67% (p < 0.001) | ||
dishwasher running | (p = 0.6) | −17% (p < 0.001) | −65% (p < 0.01) | (p = 0.6) | |
surface cleaning | (p = 0.07) | +42.5% (p < 0.001) | −26% (p < 0.05) | +55% (p < 0.05) | +52.5% (p < 0.05) |
UFP in Winter | Boiling | Grilling | Frying | Handwashing | Dishwasher Running |
---|---|---|---|---|---|
grilling | −8% (p < 0.05) | ||||
frying | +53% (p < 0.001) | +57% (p < 0.001) | |||
handwashing | −10% (p < 0.05) | (p = 0.9) | −58% (p < 0.001) | ||
dishwasher running | −8% (p < 0.01) | (p = 0.9) | −57% (p < 0.001) | (p = 0.9) | |
surface cleaning | −47% (p < 0.001) | −42% (p < 0.05) | −54% (p < 0.001) | −41% (p < 0.01) | −42% (p < 0.01) |
O3 in Summer | Boiling | Grilling | Frying | Handwashing | Dishwasher Running |
---|---|---|---|---|---|
grilling | +17% (p < 0.05) | ||||
frying | −35% (p < 0.001) | −45% (p < 0.001) | |||
handwashing | −12% (p < 0.001) | −25% (p < 0.001) | +35% (p < 0.05) | ||
dishwasher running | (p = 0.5) | (p = 0.1) | +35% (p < 0.001) | +12% (p < 0.001) | |
surface cleaning | +10.5% (p < 0.05) | (p = 0.7) | +42% (p < 0.01) | +21% (p < 0.01) | (p = 0.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keller, M.; Campagnolo, D.; Borghi, F.; Carminati, A.; Fanti, G.; Rovelli, S.; Zellino, C.; Del Vecchio, R.L.; De Vito, G.; Spinazzé, A.; et al. Influence of Time–Activity Patterns on Indoor Air Quality in Italian Restaurant Kitchens. Atmosphere 2024, 15, 976. https://doi.org/10.3390/atmos15080976
Keller M, Campagnolo D, Borghi F, Carminati A, Fanti G, Rovelli S, Zellino C, Del Vecchio RL, De Vito G, Spinazzé A, et al. Influence of Time–Activity Patterns on Indoor Air Quality in Italian Restaurant Kitchens. Atmosphere. 2024; 15(8):976. https://doi.org/10.3390/atmos15080976
Chicago/Turabian StyleKeller, Marta, Davide Campagnolo, Francesca Borghi, Alessio Carminati, Giacomo Fanti, Sabrina Rovelli, Carolina Zellino, Rocco Loris Del Vecchio, Giovanni De Vito, Andrea Spinazzé, and et al. 2024. "Influence of Time–Activity Patterns on Indoor Air Quality in Italian Restaurant Kitchens" Atmosphere 15, no. 8: 976. https://doi.org/10.3390/atmos15080976
APA StyleKeller, M., Campagnolo, D., Borghi, F., Carminati, A., Fanti, G., Rovelli, S., Zellino, C., Del Vecchio, R. L., De Vito, G., Spinazzé, A., Mihucz, V. G., Dossi, C., Carrieri, M., Cattaneo, A., & Cavallo, D. M. (2024). Influence of Time–Activity Patterns on Indoor Air Quality in Italian Restaurant Kitchens. Atmosphere, 15(8), 976. https://doi.org/10.3390/atmos15080976