Impact of El Niño-Southern Oscillation on Dust Variability during the Spring Season over the Arabian Peninsula
Abstract
:1. Introduction
2. Data and Methods
2.1. The MERRA-2 Dataset
2.2. ERA5 Reanalysis
2.3. Methods
3. Results and Discussion
3.1. DAOD Seasonal Mean, Variability, and Trends over AP
3.2. DAOD Interannual Variability and Its ENSO Teleconnections over AP during Spring Season
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edgell, H.S. Arabian Deserts: Nature, Origin, and Evolution; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 1402039697. [Google Scholar]
- Goudie, A.S. Desert Dust and Human Health Disorders. Environ. Int. 2014, 63, 101–113. [Google Scholar] [CrossRef]
- Alsubhi, Y.; Qureshi, S.; Assiri, M.E.; Siddiqui, M.H. Quantifying the Impact of Dust Sources on Urban Physical Growth and Vegetation Status: A Case Study of Saudi Arabia. Remote Sens. 2022, 14, 5701. [Google Scholar] [CrossRef]
- Al-Abbasi, K.A.; Labban, A.H.; Awad, A.M. Synoptic Characteristics of the Spatial Variability of Spring Dust Storms over Saudi Arabia. Atmosfera 2023, 37, 401–424. [Google Scholar] [CrossRef]
- Awad, A.M.; Mashat, A.W.S. Synoptic Characteristics of Spring Dust Days over Northern Saudi Arabia. Air Qual. Atmos. Health 2016, 9, 41–50. [Google Scholar] [CrossRef]
- Mashat, A.-W.S.; Awad, A.M.; Assiri, M.E.; Labban, A.H. Dynamic and Synoptic Study of Spring Dust Storms over Northern Saudi Arabia. Theor. Appl. Climatol. 2020, 140, 619–634. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global Analyses of SST, Sea Ice and Night Marine Air Temperature since the Late 19th Century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Caron, J.M.; Stepaniak, D.P.; Worley, S. Evolution of El Niño–Southern Oscillation and Global Atmospheric Surface Temperatures. J. Geophys. Res. Atmos. 2002, 107, AAC-5. [Google Scholar] [CrossRef]
- Abid, M.A.; Kucharski, F.; Almazroui, M.; Kang, I.S. Interannual Rainfall Variability and ECMWF-Sys4-Based Predictability over the Arabian Peninsula Winter Monsoon Region. Q. J. R. Meteorol. Soc. 2016, 142, 233–242. [Google Scholar] [CrossRef]
- Almazroui, M.; Khalid, S.; Kamil, S.; Ismail, M.; Islam, M.N.; Saeed, S.; Abid, M.A.; Ehsan, M.A.; Hantoush, A.S. Skill Assessment of Saudi-KAU and C3S Models in Prediction of Spring Season Rainfall over the Arabian Peninsula. Atmos. Res. 2022, 280, 106461. [Google Scholar] [CrossRef]
- Attada, R.; Dasari, H.P.; Chowdary, J.S.; Yadav, R.K.; Knio, O.; Hoteit, I. Surface Air Temperature Variability over the Arabian Peninsula and Its Links to Circulation Patterns. Int. J. Climatol. 2019, 39, 445–464. [Google Scholar] [CrossRef]
- Kang, I.S.; Rashid, I.U.; Kucharski, F.; Almazroui, M.; Alkhalaf, A.K. Multidecadal Changes in the Relationship between ENSO and Wet-Season Precipitation in the Arabian Peninsula. J. Clim. 2015, 28, 4743–4752. [Google Scholar] [CrossRef]
- Ehsan, M.A.; Kucharski, F.; Almazroui, M.; Ismail, M.; Tippett, M.K. Potential Predictability of Arabian Peninsula Summer Surface Air Temperature in the North American Multimodel Ensemble. Clim. Dyn. 2019, 53, 4249–4266. [Google Scholar] [CrossRef]
- Almazroui, M.; Abid, M.A.; Athar, H.; Islam, M.N.; Ehsan, M.A. Interannual Variability of Rainfall over the Arabian Peninsula Using the IPCC AR4 Global Climate Models. Int. J. Climatol. 2013, 33, 2328–2340. [Google Scholar] [CrossRef]
- Ehsan, M.A.; Tippett, M.K.; Almazroui, M.; Ismail, M.; Yousef, A.; Kucharski, F.; Omar, M.; Hussein, M.; Alkhalaf, A.A. Skill and Predictability in Multimodel Ensemble Forecasts for Northern Hemisphere Regions with Dominant Winter Precipitation. Clim. Dyn. 2017, 48, 3309–3324. [Google Scholar] [CrossRef]
- Dasari, H.P.; Langodan, S.; Viswanadhapalli, Y.; Vadlamudi, B.R.; Papadopoulos, V.P.; Hoteit, I. ENSO Influence on the Interannual Variability of the Red Sea Convergence Zone and Associated Rainfall. Int. J. Climatol. 2018, 38, 761–775. [Google Scholar] [CrossRef]
- Niranjan Kumar, K.; Ouarda, T. Precipitation Variability over UAE and Global SST Teleconnections. J. Geophys. Res. Atmos. 2014, 119, 10–313. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Cox, S.K. Surface Weather Observations of Atmospheric Dust over the Southwest Summer Monsoon Region. Meteorol. Atmos. Phys. 1989, 41, 19–34. [Google Scholar] [CrossRef]
- Kutiel, H.; Furman, H. Dust Storms in the Middle East: Sources of Origin and Their Temporal Characteristics. Indoor Built Environ. 2003, 12, 419–426. [Google Scholar] [CrossRef]
- Notaro, M.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Trajectory Analysis of Saudi Arabian Dust Storms. J. Geophys. Res. Atmos. 2013, 118, 6028–6043. [Google Scholar] [CrossRef]
- Shao, Y. A Model for Mineral Dust Emission. J. Geophys. Res. 2001, 106, 20239–20254. [Google Scholar] [CrossRef]
- Shao, Y. Physics and Modelling of Wind Erosion; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 2013206534. [Google Scholar]
- Labban, A.H.; Butt, M.J. Analysis of Sand and Dust Storm Events over Saudi Arabia in Relation with Meteorological Parameters and ENSO. Arab. J. Geosci. 2021, 14, 22. [Google Scholar] [CrossRef]
- Almazroui, M. Calibration of TRMM Rainfall Climatology over Saudi Arabia during 1998-2009. Atmos. Res. 2011, 99, 400–414. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Liu, Z.; Kalashnikova, O.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Assessing Temporal and Spatial Variations in Atmospheric Dust over Saudi Arabia through Satellite, Radiometric, and Station Data. J. Geophys. Res. Atmos. 2013, 118, 13253–13264. [Google Scholar] [CrossRef]
- Hannachi, A.; Awad, A.; Ammar, K. Climatology and Classification of Spring Saharan Cyclone Tracks. Clim. Dyn. 2011, 37, 473–491. [Google Scholar] [CrossRef]
- Israelevich, P.L.; Ganor, E.; Levin, Z.; Joseph, J.H. Annual Variations of Physical Properties of Desert Dust over Israel. J. Geophys. Res. Atmos. 2003, 108, 1–9. [Google Scholar] [CrossRef]
- Pozzer, A.; De Meij, A.; Yoon, J.; Tost, H.; Georgoulias, A.K.; Astitha, M. AOD Trends during 2001–2010 from Observations and Model Simulations. Atmos. Chem. Phys. 2015, 15, 5521–5535. [Google Scholar] [CrossRef]
- Kalenderski, S.; Stenchikov, G. High-Resolution Regional Modeling of Summertime Transport and Impact of African Dust over the Red Sea and Arabian Peninsula. J. Geophys. Res. Atmos. 2016, 121, 6435–6458. [Google Scholar] [CrossRef]
- Hsu, N.C.; Gautam, R.; Sayer, A.M.; Bettenhausen, C.; Li, C.; Jeong, M.J.; Tsay, S.C.; Holben, B.N. Global and Regional Trends of Aerosol Optical Depth over Land and Ocean Using SeaWiFS Measurements from 1997 to 2010. Atmos. Chem. Phys. 2012, 12, 8037–8053. [Google Scholar] [CrossRef]
- De Meij, A.; Pozzer, A.; Lelieveld, J. Trend Analysis in Aerosol Optical Depths and Pollutant Emission Estimates between 2000 and 2009. Atmos. Environ. 2012, 51, 75–85. [Google Scholar] [CrossRef]
- Farahat, A.; El-Askary, H.; Adetokunbo, P.; Fuad, A.T. Analysis of Aerosol Absorption Properties and Transport over North Africa and the Middle East Using AERONET Data. Ann. Geophys. 2016, 34, 1031–1044. [Google Scholar] [CrossRef]
- Al Otaibi, M.; Farahat, A.; Tawabini, B.; Omar, M.H.; Ramadan, E.; Abuelgasim, A.; Singh, R.P. Long-Term Aerosol Trends and Variability over Central Saudi Arabia Using Optical Characteristics from Solar Village AERONET Measurements. Atmosphere 2019, 10, 752. [Google Scholar] [CrossRef]
- Farahat, A.; El-Askary, H.; Al-Shaibani, A. Study of Aerosols’ Characteristics and Dynamics over the Kingdom of Saudi Arabia Using a Multisensor Approach Combined with Ground Observations. Adv. Meteorol. 2015, 2015, 247531. [Google Scholar] [CrossRef]
- Farahat, A. Comparative Analysis of MODIS, MISR and AERONET Climatology over the Middle East and North Africa. Ann. Geophys. 2018, 37, 1–46. [Google Scholar] [CrossRef]
- Syed, F.S.; Adnan, S.; Zamreeq, A.; Ghulam, A. Identification of Droughts over Saudi Arabia and Global Teleconnections. Nat. Hazards 2022, 112, 2717–2737. [Google Scholar] [CrossRef]
- Saharwardi, M.S.; Dasari, H.P.; Aggarwal, V.; Ashok, K.; Hoteit, I. Long-Term Variability in the Arabian Peninsula Droughts Driven by the Atlantic Multidecadal Oscillation. Earth’s Future 2023, 11, e2023EF003549. [Google Scholar] [CrossRef]
- Gandham, H.; Dasari, H.P.; Langodan, S.; Karumuri, R.K.; Hoteit, I. Major Changes in Extreme Dust Events Dynamics over the Arabian Peninsula during 2003–2017 Driven by Atmospheric Conditions. J. Geophys. Res. Atmos. 2020, 125, e2020JD032931. [Google Scholar] [CrossRef]
- Kumar, K.R.; Attada, R.; Dasari, H.P.; Vellore, R.K.; Langodan, S.; Abualnaja, Y.O.; Hoteit, I. Aerosol Optical Depth Variability over the Arabian Peninsula as Inferred from Satellite Measurements. Atmos. Environ. 2018, 187, 346–357. [Google Scholar] [CrossRef]
- Maghrabi, A.H.; Al-Dosari, A.F. Effects on Surface Meteorological Parameters and Radiation Levels of a Heavy Dust Storm Occurred in Central Arabian Peninsula. Atmos. Res. 2016, 182, 30–35. [Google Scholar] [CrossRef]
- Pu, B.; Ginoux, P. The Impact of the Pacific Decadal Oscillation on Springtime Dust Activity in Syria. Atmos. Chem. Phys. 2016, 16, 13431–13448. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Maytubby, A.; Liu, X. Variation Patterns of the ENSO’s Effects on Dust Activity in North Africa, Arabian Peninsula, and Central Asia of the Dust Belt. Climate 2022, 10, 150. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, X.; Yin, Z.Y.; An, Z. Global Impact of ENSO on Dust Activities with Emphasis on the Key Region from the Arabian Peninsula to Central Asia. J. Geophys. Res. Atmos. 2021, 126, e2020JD034068. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Liu, Z.; Wang, F.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Climatic Controls on the Interannual to Decadal Variability in Saudi Arabian Dust Activity: Toward the Development of a Seasonal Dust Prediction Model. J. Geophys. Res. Atmos. 2015, 120, 1739–1758. [Google Scholar] [CrossRef]
- Almazroui, M.; Alobaidi, M.; Saeed, S.; Mashat, A.; Assiri, M. The Possible Impact of the Circumglobal Wave Train on the Wet Season Dust Storm Activity over the Northern Arabian Peninsula. Clim. Dyn. 2017, 50, 2257–2268. [Google Scholar] [CrossRef]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef] [PubMed]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra, R. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Dubovik, O.; Lacis, A.A. Recent Trends in Aerosol Optical Properties Derived from AERONET Measurements. Atmos. Chem. Phys. 2014, 14, 12271–12289. [Google Scholar] [CrossRef]
- Srivastava, A.; Saran, S. Comprehensive Study on AOD Trends over the Indian Subcontinent: A Statistical Approach. Int. J. Remote Sens. 2017, 38, 5127–5149. [Google Scholar] [CrossRef]
- Zhao, B.; Jiang, J.H.; Gu, Y.; Diner, D.; Worden, J.; Liou, K.-N.; Su, H.; Xing, J.; Garay, M.; Huang, L. Decadal-Scale Trends in Regional Aerosol Particle Properties and Their Linkage to Emission Changes. Environ. Res. Lett. 2017, 12, 54021. [Google Scholar] [CrossRef]
- Maghrabi, A.H.; Alotaibi, R.N. Long-Term Variations of AOD from an AERONET Station in the Central Arabian Peninsula. Theor. Appl. Climatol. 2018, 134, 1015–1026. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The Influence of Autocorrelation on the Ability to Detect Trend in Hydrological Series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Molteni, F.; Stockdale, T.N.; Vitart, F. Understanding and Modelling Extra-Tropical Teleconnections with the Indo-Pacific Region during the Northern Winter. Clim. Dyn. 2015, 45, 3119–3140. [Google Scholar] [CrossRef]
- Rashid, I.U.; Abid, M.A.; Almazroui, M.; Kucharski, F.; Hanif, M.; Ali, S.; Ismail, M. Early Summer Surface Air Temperature Variability over Pakistan and the Role of El Niño–Southern Oscillation Teleconnections. Int. J. Climatol. 2022, 42, 5768–5784. [Google Scholar] [CrossRef]
- Yadav, R.K. Midlatitude Rossby Wave Modulation of the Indian Summer Monsoon. Q. J. R. Meteorol. Soc. 2017, 143, 2260–2271. [Google Scholar] [CrossRef]
- Hamal, K.; Sharma, S.; Baniya, B.; Khadka, N.; Zhou, X. Inter-Annual Variability of Winter Precipitation Over Nepal Coupled with Ocean-Atmospheric Patterns During 1987–2015. Front. Earth Sci. 2020, 8, 161. [Google Scholar] [CrossRef]
- Ullah, W.; Wang, G.; Lou, D.; Ullah, S.; Bhatti, A.S.; Ullah, S.; Karim, A.; Hagan, D.F.T.; Ali, G. Large-Scale Atmospheric Circulation Patterns Associated with Extreme Monsoon Precipitation in Pakistan during 1981–2018. Atmos. Res. 2021, 253, 105489. [Google Scholar] [CrossRef]
- Shen, L.; Jacob, D.J.; Mickley, L.J.; Wang, Y.; Zhang, Q. Insignificant Effect of Climate Change on Winter Haze Pollution in Beijing. Atmos. Chem. Phys. 2018, 18, 17489–17496. [Google Scholar] [CrossRef]
- Monahan, A.H.; Fyfe, J.C.; Ambaum, M.H.P.; Stephenson, D.B.; North, G.R. Empirical Orthogonal Functions: The Medium Is the Message. J. Clim. 2009, 22, 6501–6514. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; International Geophysics Series; Academic Press: Cambridge, MA, USA, 2006; Volume 91, ISBN 9780127519661. [Google Scholar]
- Panda, D.K.; AghaKouchak, A.; Ambast, S.K. Increasing Heat Waves and Warm Spells in India, Observed from a Multiaspect Framework. J. Geophys. Res. 2017, 122, 3837–3858. [Google Scholar] [CrossRef]
- Kumar, A.; Chen, M. What Is the Variability in US West Coast Winter Precipitation during Strong El Niño Events? Clim. Dyn. 2017, 49, 2789–2802. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin, C., Ed.; Griffin: London, UK, 1975. [Google Scholar]
- Ali, G.; Bao, Y.; Ullah, W.; Ullah, S.; Guan, Q.; Liu, X.; Li, L.; Lei, Y.; Li, G.; Ma, J. Spatiotemporal Trends of Aerosols over Urban Regions in Pakistan and Their Possible Links to Meteorological Parameters. Atmosphere 2020, 11, 306. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Alghamdi, A.S. Climatology and Changes in Temperature Seasonality in the Arabian Peninsula. Atmosphere 2023, 15, 26. [Google Scholar] [CrossRef]
- Almazroui, M.; Rashid, I.U.; Saeed, S.; Islam, M.N. ENSO Influence on Summer Temperature over Arabian Peninsula: Role of Mid-Latitude Circulation. Clim. Dyn. 2019, 53, 5047–5062. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Santoso, A.; Cai, W. El Niño Southern Oscillation in a Changing Climate; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 253, ISBN 1119548128. [Google Scholar]
- Taschetto, A.S.; Ummenhofer, C.C.; Stuecker, M.F.; Dommenget, D.; Ashok, K.; Rodrigues, R.R.; Yeh, S. ENSO Atmospheric Teleconnections. In El Niño Southern Oscillation in a Changing Climate; Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 309–335. [Google Scholar]
- Kucharski, F.; Abid, M.A. Interannual Variability of the Indian Monsoon and Its Link to ENSO. Oxf. Res. Encycl. Clim. Sci. 2017, 1–24. [Google Scholar] [CrossRef]
- Rodwell, M.J.; Hoskins, B.J. Subtropical Anticyclones and Summer Monsoons. J. Clim. 2001, 14, 3192–3211. [Google Scholar] [CrossRef]
- Nelli, N.R.; Francis, D.; Fonseca, R.; Abida, R.; Weston, M.; Wehbe, Y.; Al Hosary, T. The Atmospheric Controls of Extreme Convective Events over the Southern Arabian Peninsula during the Spring Season. Atmos. Res. 2021, 262, 105788. [Google Scholar] [CrossRef]
- Horan, M.F.; Batibeniz, F.; Kucharski, F.; Almazroui, M.; Abid, M.A.; Fu, J.S.; Ashfaq, M. Moisture Sources for Precipitation Variability over the Arabian Peninsula. Clim. Dyn. 2023, 61, 4793–4807. [Google Scholar] [CrossRef]
- Hong, X.; Lu, R. The Meridional Displacement of the Summer Asian Jet, Silk Road Pattern, and Tropical SST Anomalies. J. Clim. 2016, 29, 3753–3766. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsubhi, Y.; Ali, G. Impact of El Niño-Southern Oscillation on Dust Variability during the Spring Season over the Arabian Peninsula. Atmosphere 2024, 15, 1060. https://doi.org/10.3390/atmos15091060
Alsubhi Y, Ali G. Impact of El Niño-Southern Oscillation on Dust Variability during the Spring Season over the Arabian Peninsula. Atmosphere. 2024; 15(9):1060. https://doi.org/10.3390/atmos15091060
Chicago/Turabian StyleAlsubhi, Yazeed, and Gohar Ali. 2024. "Impact of El Niño-Southern Oscillation on Dust Variability during the Spring Season over the Arabian Peninsula" Atmosphere 15, no. 9: 1060. https://doi.org/10.3390/atmos15091060
APA StyleAlsubhi, Y., & Ali, G. (2024). Impact of El Niño-Southern Oscillation on Dust Variability during the Spring Season over the Arabian Peninsula. Atmosphere, 15(9), 1060. https://doi.org/10.3390/atmos15091060