Possible Identification of Precursor ELF Signals on Recent EQs That Occurred Close to the Recording Station
Abstract
:1. Introduction
2. Outline of the ELF(SR) and Their Relation to Geophysics
3. Questions and Possible Answers
- How far from the recording station could the epicenter of an EQ be located for this to produce an observable precursor signal?
- How strong it must be for precursor signals to be recorded?
- How can we associate a recorded signal with a certain EQ?
4. Discussion
5. Conclusions
- Abnormal SR signals detected 1 to 3 weeks before a main EQ may be considered seismic precursors only when the recording site is located inside the preparation zone of the EQ.
- The closer the EQ is to the recording site, the more unambiguous the precursor signals are.
- Signals produced by offshore EQs seem to contain Fourier frequencies divided into two parts at the two ends of the normal range of 20 to 25 Hz. This peculiar feature may be related to the water layers above an offshore EQ which constitute an obstacle to the emanating gases, causing this way retardation in the atmospheric–ionospheric ionization. Additional study of abnormal SR signals produced by offshore EQs is necessary.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sobolev, G.A. Methodology, Results, and Problems of Forecasting Earthquakes. Her. Russ. Acad. Sci. 2015, 85, 107. [Google Scholar] [CrossRef]
- Davis, K.; Baker, D.M. Ionospheric effects observed around the time of the Alaska earthquake of March 28, 1964. J. Geophys. Res. 1965, 70, 2251–2253. [Google Scholar] [CrossRef]
- Leonard, R.S.; Barnes, R.A., Jr. Observation of ionospheric disturbances following the Alaska earthquake. JGR Lett. 1965, 70, 1250–1253. [Google Scholar] [CrossRef]
- Hayakawa, M.; Fujinawa, Y. (Eds.) Electromagnetic Phenomena Related to Earthquake Prediction; Terra Scientific Publishing Company: Tokyo, Japan, 1994. [Google Scholar]
- Hayakawa, M.; Molchanov, O. (Eds.) Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; Terra Scientific Publiching Company: Tokyo, Japan, 2002. [Google Scholar]
- Hayakawa, M.; Molchanov, O.A. Seismo-electromagnetics: As a new field of radiophysics: Electromagnetic phenomena associated with earthquakes. URSI Radio Sci. Bull. 2007, 2007, 8–17. [Google Scholar]
- Pullinets, A.S. Lithosphere-Atmosphere-Ionosphere Coupling Related to Earthquakes. In Proceedings of the 2nd URSI AT-OASC, Gran Canaria, Spain, 28 May–June 2018. [Google Scholar]
- Pulinets, S.; Ouzounov, D. Intergeospheres Interaction as a source of earthquake precursor’s generation. In Proceedings of the EMSEV 2018 International Workshop, Potenza, Italy, 17–21 September 2018. [Google Scholar]
- Zhao, B.; Qian, C.; Yu, H.; Liu, J.; Maimaitusun, N.; Yu, C.; Zhang, X.; Ma, Y. Preliminary analysis of ionospheric anomalies before strong earthquakes in and around mainland China. Atmosphere 2022, 13, 410. [Google Scholar] [CrossRef]
- Hayakawa, M.; Tomakazu, A.; Rozhnoi, A.; Solovieva, M. Very -low -to Low-Frequency Sounding of Ionospheric Perturbations and Possible Association with Earthquakes in Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies. Geophys. Monogr. 2018, 234, 277–304. [Google Scholar]
- Namgaladge, A.; Karpov, M.; Knyazeva, M. Seismogenic disturbances of the ionosphere during high geomagnetic activity. Atmosphere 2019, 10, 359. [Google Scholar] [CrossRef]
- Nayak, K.; Lopez-Urias, C.; Romero-Andrade, R.; Sharma, G.; Guzman-Acevedo, G.M.; Trejo-Soto, M.E. Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake. Geosciences 2023, 13, 319. [Google Scholar] [CrossRef]
- Sharma, G.; Nayak, K.; Romero-Andrade, R.; Aslam, M.A.; Sarma, K.K.; Aggarwal, S.P. Low Ionosphere Density Above the Earthquake Region of Mw 7.2, El Mayor-Cucapah Earthquake Evident from Dense CORS Data. J. Indian Soc. Remote Sens. 2024, 52, 543. [Google Scholar] [CrossRef]
- Shah, M.; Shahzad, R.; Jamjareegulgarn, P.; Ghaffar, B.; Oliveira-Junior, J.F.; Hassan, A.M.; Ghamry, N.A. Machine-Learning-Based Lithosphere-Atmosphere-Ionosphere Coupling Associated with Mw > 6 Earthquakes in America. Atmosphere 2023, 14, 1236. [Google Scholar] [CrossRef]
- Shah, M.; Qureshi, R.-U.; Khan, N.G.; Ehsan, M.; Yan, J. Artificial Neural Network based thermal anomalies associated with earthquakes in Pakistan from MODIS LST. J. Atmos. Sol.-Terr. Phys. 2021, 215, 105568. [Google Scholar] [CrossRef]
- Xie, B.; Wu, L.; Mao, W.; Wang, Z.; Sun, L.; Xu, Y. Horizontal Magnetic Anomaly Accompanying the Co-Seismic Earthquake Light of the M7.3 Fukushima Earthquake of 16 March 2022 Phenomenon and Mechanism. Remote Sens. 2023, 15, 5052. [Google Scholar] [CrossRef]
- Sorokin, M.V.; Pokhotelov, A.O. Gyrotropic Waves in the mid-latitude ionosphere. J. Atmos. Sol.-Terr. Phys. 2005, 67, 921–930. [Google Scholar] [CrossRef]
- Hayakawa, M.; Ohta, K.; Sorokin, M.V.; Yaschenko, K.A.; Izutsu, J.; Hobara, Y.; Nickolaenko, P.A. Interpretation in terms of gyrotropic waves of Schumann –resonance-like line emissions observed at Nakatsugawa in possible association with nearby Japanese earthquakes. J. Atmos. Terr. Phys. 2010, 72, 1292–1298. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Saha, M.; Khan, R.; Mandal, S.; Acharyya, K.; Saha, R. Possible detection of ionospheric disturbances during Sumatra Andaman islands earthquakes in December. Indian J. Radio Space Phys. 2005, 34, 314–317. [Google Scholar]
- Sorokin, V.M.; Hayakawa, M. On the generation of narrow -banded ULF/ELF pulsations in the lower ionospheric contacting layer. J. Geophys. Res. 2008, 113, A06306. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Sasmal, S.; Chakrabarti, S. Ionospheric anomaly due to seismic activities part 2: Evidence from d-layer preparation and disappearance times. Nat. Hazards Earth Syst. Sci. 2010, 10, 1751–1757. [Google Scholar] [CrossRef]
- Harrison, G.R.; Aplin, L.K.; Rycroft, J.M. Atmospheric electricity coupling between earthquake regions and the ionosphere. J. Atmos. Sol.-Terr. Phys. 2010, 72, 376–381. [Google Scholar] [CrossRef]
- Shah, M.; Jin, S. Pre-seismic ionospheric anomalies of the 2013 Mw 7.7 Pakistan earthquake from GPS and COSMIC observations. Geod. Geodyn. 2018, 9, 378–387. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chuo, Y.J.; Shan, S.J.; Tsai, Y.B.; Chen, Y.I.; Pulinets, S.A.; Yu, S.B. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann. Geophys. 2004, 22, 1585–1593. [Google Scholar] [CrossRef]
- Tsugawa, T.; Saito, A.; Otsuka, Y.; Nishioka, M.; Maruyama, T.; Kato, H.; Nagatsuma, T.; Murata, K.T. Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 2011, 63, 875–879. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, X.; Du, X. Analysis of Ionospheric precursors possibly related to Yangbi Ms 6.4 and Maduo Ms 7.4 earthquake occurred on 21st May, 2021 in China by GPS TEC and GIM TEC data. Atmosphere 2022, 13, 1725. [Google Scholar] [CrossRef]
- Walker, S.N.; Kadirkamanathan, V.; Pokhotelov, O.A. Changes in the ultra-low frequency wave field during the precursor phase to the Sichuan earthquake: DEMETER observations. Ann. Geophys. 2013, 31, 1597–1603. [Google Scholar] [CrossRef]
- Parrot, M.; Li, M. DEMETER Results Related to Seismic Activity. URSI Radio Sci. Bull. 2017, 88, 18–25. [Google Scholar]
- Li, M.; Shen, X.; Yu, C.; Zhang, X.; Zhang, Y.; Yu, C.; Yan, R.; Liu, D.; Lu, H.; Guo, F.; et al. Primary joint statistical seismic influence on ionospheric parameters recorded by the CSES and DEMETER satellites. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028116. [Google Scholar] [CrossRef]
- De Santis, A.; Balasis, G.; Pav’on-Carrasco, F.J.; Cianchini, G.; Mandea, M. Potential earthquake precursory pattern from space: The 2015 Nepal event as seen by magnetic Swarm satellites. Adv. Space Res. 2017, 461, 119–126. [Google Scholar] [CrossRef]
- Li, M.; Yang, Z.; Song, J.; Zhang, Y.; Jiang, X.; Shen, X. Statistical Seismo-Ionospheric influence with focal Mechanism under consideration. Atmosphere 2023, 14, 455. [Google Scholar] [CrossRef]
- Florios, K.; Contopoulos, I.; Christofilakis, V.; Tatsis, G.; Chronopoulos, S.; Repapis, C.; Tritakis, V. Pre-seismic Electromagnetic Perturbations in Two Earthquakes in Northern Greece. Pure App. Geophys. 2020, 177, 787–799. [Google Scholar] [CrossRef]
- Florios, K.; Contopoulos, I.; Tatsis, G.; Christofilakis, V.; Chronopoulos, S.; Repapis, C.; Tritakis, V. Possible Earthquake Forecasting in a narrow Space-Time-Magnitude Window. Earth Sci. Inform. 2021, 14, 349–364. [Google Scholar] [CrossRef]
- Karamanos, K.; Peratzakis, A.; Kapiris, P.; Nikolopoulos, S.; Kopanas, X.; Eftaxias, K. Extractihg preseismic electromagnetic, signatures in terms of symbolic dynamics. Nonlinear Process. Geophys. 2005, 12, 835–848. [Google Scholar] [CrossRef]
- Karamanos, K.; Dakopoulos, D.; Aloupis, K.; Peratzakis, A.; Athanasopoulou, L.; Nikolopoulos, S.; Kapiris, P.; Eftaxias, K. Study of pre-seismic Electromagnetic signals in terms of complexity. Phys. Rev. E 2006, 74, 016104. [Google Scholar] [CrossRef] [PubMed]
- Christofilakis, V.; Tatsis, G.; Votis, G.; Contopoulos, I.; Repapis, C.; Tritakis, V. Significant ELF perturbations in the Schumann Resonance band before and during a shallow mid-magnitude seismic activity in the Greek area (Kalpaki). J. Atmos. Sol.-Terr. Phys. 2019, 182, 138–146. [Google Scholar] [CrossRef]
- Tritakis, V.; Contopoulos, I.; Mlynarczyk, J.; Christofilakis, V.; Tatsis, G.; Repapis, C. How Effective and Prerequisite Are Electromagnetic Extremely Low Frequency (ELF) Recordings in the Schumann Resonances Band to Function as Seismic Activity Precursors. Atmosphere 2022, 13, 185. [Google Scholar] [CrossRef]
- Tritakis, V.; Mlynarczyk, J.; Contopoulos, I.; Kubisz, J.; Christofilakis, V.; Tatsis, G.; Chronopoulos, S.K.; Repapis, C. Extremely low frequency (ELF) electromagnetic signals as a possible precursory warning of incoming seismic activity. Atmosphere 2024, 15, 457. [Google Scholar] [CrossRef]
- Schumann, W.O. On the free oscillations of a conducting sphere which is surrounded by an air layer and an ionosphere shell. Z. Naturforschaftung 1952, 7, 149–154. (In German) [Google Scholar] [CrossRef]
- Balser, M.; Wagner, C. Observations of Earth–Ionosphere Cavity Resonances. Nature 1960, 188, 638–641. [Google Scholar] [CrossRef]
- Balser, M.; Wagner, C.A. Diurnal power variations of the Earth-ionosphere cavity modes and their relationship to worldwide thunderstorm activity. J. Geophys. Res. 1962, 67, 619–625. [Google Scholar] [CrossRef]
- Nickolaenko, P.A.; Galuk, P.Y.; Hayakawa, M. The effect of a compact ionosphere disturbance over the earthquake: A focus on Schumann resonance. Int. J. Electron. Appl. Res. 2018, 5, 11–39. [Google Scholar] [CrossRef]
- Schekotov, A.; Chebrov, D.; Hayakawa, M.; Belyaev, G.; Berseneva, N. Short-term earthquake prediction in Kamchatka using low-frequency magnetic fields. Nat. Hazards 2020, 100, 735–755. [Google Scholar] [CrossRef]
- Sekiguchi, M.; Hobara, Y.; Hayakawa, M. Diurnal and seasonal variations in the Schumann resonance parameters at Moshiri, Japan. J. Atmos. Electr. 2008, 28, 1–10. [Google Scholar] [CrossRef]
- Roldugin, V.; Maltsev, Y.P.; Petrova, G.; Vasiljev, A. Decrease of the first Schumann resonance frequency during solar proton events. J. Geophys. Res. Space Phys. 2001, 106, 18555–18562. [Google Scholar] [CrossRef]
- Sinitsind, V.; Gordeev, E.; Hayakawa, M. Seismoionospheric depression of the ULF geomagnetic fluctuations at Kamchatka and Japan. Phys. Chem. Earth 2006, 31, 313–318. [Google Scholar]
- Fidani, C.; Battiston, R. Analysis of NOAA particle data and correlations to seismic activity. Nat. Hazards Earth Syst. Sci. 2008, 8, 1277–1291. [Google Scholar] [CrossRef]
- Tritakis, V.; Contopoulos, I.; Florios, C.; Tatsis, G.; Christophylakis, V.; Baldoumas, C.; Repapis, C. Anthropogenic Noise and its Footprint on ELF Schumann Resonance Recordings. Front. Earth Sci. 2021, 9, 646277. [Google Scholar] [CrossRef]
- Mlynarczyk, J.; Tritakis, V.; Contopoulos, I.; Nieckarz, Z.; Christophilakis, V.; Tatsis, G.; Repapis, C. Anthropogenic Sources of Electromagnetic Interferences in the Lowest Elf Band Recordings (Schumann Resonances). Magnetism 2022, 2, 152–167. [Google Scholar] [CrossRef]
- Tatsis, G.; Votis, C.; Christofilakis, V.; Kostarakis, P.; Tritakis, V.; Repapis, C. A prototype data acquisition and processing system for Schumann resonance measurements. J. Atmos. Sol.-Terr. Phys. 2015, 135, 152–160. [Google Scholar] [CrossRef]
- Tatsis, G.; Christofilakis, V.; Chronopoulos, S.K.; Kostarakis, P.; Nistazakis, H.E.; Repapis, C.; Tritakis, V. Design and Implementation of a Test Fixture for ELF Schumann Resonance Magnetic Antenna Receiver and Magnetic Permeability Measurements. Electronics 2020, 9, 171. [Google Scholar] [CrossRef]
- Tatsis, G.; Christofilakis, V.; Chronopoulos, S.K.; Baldoumas, G.; Sakkas, A.; Paschalidou, A.K.; Kassomenos, P.; Petrou, I.; Kostarakis, P.; Repapis, C.; et al. Study of the variations in THE Schumann resonances parameters measured in a Southern Mediterranean environment. Sci. Total Environ. 2020, 715, 136926. [Google Scholar] [CrossRef]
- Votis, C.I.; Tatsis, G.; Christofilakis, V.; Chronopoulos, S.K.; Kostarakis, P.; Tritakis, V.; Repapis, C. A new portable ELF Schumann resonance receiver: Design and detailed analysis of the antenna and the analog front-end. J. Wirel. Commun. Netw. 2018, 2018, 155. [Google Scholar] [CrossRef]
- Mlynarczyk, J.; Popek, M.; Kulak, A.; Klucjasz, S.; Martynski, K.; Kubisz, J. New Broadband ELF Receiver for Studying Atmospheric Discharges in Central Europe. In Proceedings of the Baltic URSI Symposium, Poznan, Poland, 14–17 May 2018. [Google Scholar]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
A/A | Date | Place | Magnitude (Richter) | Preparation Zone (km) | Distance (km) |
---|---|---|---|---|---|
1 | 16 January 2024 | Leonidion | 4.8 | 111.17 | 30 |
2 | 18 January 2024 | Kymi | 4.8 | 111.17 | 170 |
3 | 22 January 2024 | Kammena Vourla | 4.1 | 57.94 | 165 |
4 | 22 February 2024 | Itea | 4.4 | 77.98 | 108 |
5 | 22 February 2024 | Kyparissia Gulf | 4.4 | 77.98 | 106 |
6 | 2 March 2024 | Farsala | 4.1 | 57.94 | 226 |
7 | 3 March 2024 | Kefalonia | 3.5 | 26.24 | 226 |
8 | 29 March 2024 | Kyparissia Gulf | 5.6 | 255.85 | 106 |
9 | 29 April 2024 | Hrakleio | 4.2 | 63.97 | 312 |
10 | 13 May 2024 | Zacharo | 3.7 | 38.99 | 98 |
A/A | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
DATES | 23/12/24–16/1/24 | 17/1/24– 29/1/24 | 30/1/24–10/3/24 | 11/3/24–24/3/24 | 25/3/24–30/3/24 | 31/3/24– 14/4/24 | 15/4/24–13/5/24 |
No. of signals | 26 | 7 | 0 | 7 | 0 | 5 | 0 |
Associated with EQ no. 1 in Leonidion | Associated with EQ no. 8 in the Kyparissia Gulf |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contopoulos, I.; Mlynarczyk, J.; Kubisz, J.; Tritakis, V. Possible Identification of Precursor ELF Signals on Recent EQs That Occurred Close to the Recording Station. Atmosphere 2024, 15, 1134. https://doi.org/10.3390/atmos15091134
Contopoulos I, Mlynarczyk J, Kubisz J, Tritakis V. Possible Identification of Precursor ELF Signals on Recent EQs That Occurred Close to the Recording Station. Atmosphere. 2024; 15(9):1134. https://doi.org/10.3390/atmos15091134
Chicago/Turabian StyleContopoulos, Ioannis, Janusz Mlynarczyk, Jerzy Kubisz, and Vasilis Tritakis. 2024. "Possible Identification of Precursor ELF Signals on Recent EQs That Occurred Close to the Recording Station" Atmosphere 15, no. 9: 1134. https://doi.org/10.3390/atmos15091134
APA StyleContopoulos, I., Mlynarczyk, J., Kubisz, J., & Tritakis, V. (2024). Possible Identification of Precursor ELF Signals on Recent EQs That Occurred Close to the Recording Station. Atmosphere, 15(9), 1134. https://doi.org/10.3390/atmos15091134