A New Regional Background Atmospheric Station in the Yangtze River Delta Region for Carbon Monoxide: Assessment of Spatiotemporal Characteristics and Regional Significance
Abstract
:1. Introduction
2. Methodology
2.1. Monitoring Site
2.2. Measurement System
2.3. Data Analysis
2.3.1. Data Filter
2.3.2. Atmospheric Transport Model
2.3.3. Potential Sources Contribution Function
2.3.4. Spatial Representative
2.4. Other Datasets
2.4.1. Land-Use and Land-Cover Information
2.4.2. Nighttime Light Intensity Information
3. Results and Discussions
3.1. Different Temporal Variation of Observation Records at DMS
3.1.1. Annual Average Concentration of CO
3.1.2. Seasonal Characteristics
3.1.3. Diurnal Cycle
3.2. Influence of Atmospheric Transport and Potential Sources Contribution
3.3. Regional Representation of CO at DMS
3.3.1. Well-Mixed Atmosphere Conditions
3.3.2. Potential Influences of Human Activities
3.3.3. Well Alliance with CAMS Reanalysis Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, A.M.; Cicerone, R.J. Atmospheric CH4, CO and OH from 1860 to 1985. Nature 1986, 321, 148–150. [Google Scholar] [CrossRef]
- Lashof, D.A.; Ahuja, D.R. Relative Contributions of Greenhouse Gas Emissions to Global Warming. Nature 1990, 344, 529–531. [Google Scholar] [CrossRef]
- Thompson, A.M. The Oxidizing Capacity of the Earth’s Atmosphere: Probable Past and Future Changes. Science 1992, 256, 1157–1165. [Google Scholar] [CrossRef]
- Zheng, B.; Chevallier, F.; Yin, Y.; Ciais, P.; Fortems-Cheiney, A.; Deeter, M.N.; Parker, R.J.; Wang, Y.; Worden, H.M.; Zhao, Y. Global Atmospheric Carbon Monoxide Budget 2000–2017 Inferred from Multi-Species Atmospheric Inversions. Earth Syst. Sci. Data 2019, 11, 1411–1436. [Google Scholar] [CrossRef]
- Duncan, B.N.; Strahan, S.E.; Yoshida, Y.; Steenrod, S.D.; Livesey, N. Model Study of the Cross-Tropopause Transport of Biomass Burning Pollution. Atmos. Chem. Phys. 2007, 7, 3713–3736. [Google Scholar] [CrossRef]
- Silva, S.J.; Arellano, A.F. Characterizing Regional-Scale Combustion Using Satellite Retrievals of CO, NO2 and CO2. Remote Sens. 2017, 9, 744. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, Q.; Lin, W.; Xu, X.; Yao, J.; Gao, W. Measurement Report: Long-Term Variations in Carbon Monoxide at a Background Station in China’s Yangtze River Delta Region. Atmos. Chem. Phys. 2020, 20, 15969–15982. [Google Scholar] [CrossRef]
- Klemm, O.; Hahn, M.K.; Giehl, H. Airborne, Continuous Measurement of Carbon Monoxide in the Lower Troposphere. Environ. Sci. Technol. 1996, 30, 115–120. [Google Scholar] [CrossRef]
- Luo, H.; Tang, X.; Wu, H.; Kong, L.; Wu, Q.; Cao, K.; Song, Y.; Luo, X.; Wang, Y.; Zhu, J.; et al. The Impact of the Numbers of Monitoring Stations on the National and Regional Air Quality Assessment in China During 2013–2018. Adv. Atmos. Sci. 2022, 39, 1709–1720. [Google Scholar] [CrossRef] [PubMed]
- Balzani Lööv, J.M.; Henne, S.; Legreid, G.; Staehelin, J.; Reimann, S.; Prévôt, A.S.H.; Steinbacher, M.; Vollmer, M.K. Estimation of Background Concentrations of Trace Gases at the Swiss Alpine Site Jungfraujoch (3580 m Asl). J. Geophys. Res. Atmos. 2008, 113, D22305. [Google Scholar] [CrossRef]
- Kaiser, A.; Scheifinger, H.; Spangl, W.; Weiss, A.; Gilge, S.; Fricke, W.; Ries, L.; Cemas, D.; Jesenovec, B. Transport of Nitrogen Oxides, Carbon Monoxide and Ozone to the Alpine Global Atmosphere Watch Stations Jungfraujoch (Switzerland), Zugspitze and Hohenpeissenberg (Germany), Sonnblick (Austria) and Mt. Krvavec (Slovenia). Atmos. Environ. 2007, 41, 9273–9287. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, L.X.; Novelli, P.C.; Worthy, D.E.J.; Zellweger, C.; Klausen, J.; Ernst, M.; Steinbacher, M.; Cai, Y.X.; Xu, L.; et al. Evaluation of in Situ Measurements of Atmospheric Carbon Monoxide at Mount Waliguan, China. Atmos. Chem. Phys. 2011, 11, 5195–5206. [Google Scholar] [CrossRef]
- Adame, J.A.; Cupeiro, M.; Yela, M.; Cuevas, E.; Carbajal, G. Ozone and Carbon Monoxide at the Ushuaia GAW-WMO Global Station. Atmos. Res. 2019, 217, 1–9. [Google Scholar] [CrossRef]
- Fang, S.X.; Zhou, L.X.; Tans, P.P.; Ciais, P.; Steinbacher, M.; Xu, L.; Luan, T. In Situ Measurement of Atmospheric CO2 at the Four WMO/GAW Stations in China. Atmos. Chem. Phys. 2014, 14, 2541–2554. [Google Scholar] [CrossRef]
- Fang, S.; Tans, P.P.; Steinbacher, M.; Zhou, L.; Luan, T.; Li, Z. Observation of Atmospheric CO2 and CO at Shangri-La Station: Results from the Only Regional Station Located at Southwestern China. Tellus B Chem. Phys. Meteorol. 2016, 68, 28506. [Google Scholar] [CrossRef]
- Xiong, H.; Lin, Y.; Liu, S.; Zang, K.; Chen, Y.; Liu, P.; Liang, M.; Jiang, K.; Qing, X.; Qiu, S.; et al. Variations of Atmospheric CO Concentration from 2004 to 2019 at the Mt. Waliguan Station in China. Atmos. Res. 2022, 271, 106060. [Google Scholar] [CrossRef]
- Liu, S.; Fang, S.; Liang, M.; Sun, W.; Feng, Z. Temporal Patterns and Source Regions of Atmospheric Carbon Monoxide at Two Background Stations in China. Atmos. Res. 2019, 220, 169–180. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, H. Analysis on the Spatio-Temporal Gradients of Carbon Monoxide in China by SCIAMACHY Remotely Sensed Data. In Proceedings of the MIPPR 2009: Remote Sensing and GIS Data Processing and Other Applications; SPIE: Bellingham, WA, USA, 2009; Volume 7498, pp. 765–772. [Google Scholar]
- Huang, X.; Wang, T.; Talbot, R.; Xie, M.; Mao, H.; Li, S.; Zhuang, B.; Yang, X.; Fu, C.; Zhu, J.; et al. Temporal Characteristics of Atmospheric CO2 in Urban Nanjing, China. Atmos. Res. 2015, 153, 437–450. [Google Scholar] [CrossRef]
- Chen, C.; Liu, C.; Chen, R.; Wang, W.; Li, W.; Kan, H.; Fu, C. Ambient Air Pollution and Daily Hospital Admissions for Mental Disorders in Shanghai, China. Sci. Total Environ. 2018, 613–614, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.; Fileni, L.; Palomino, I.; Vivanco, M.G.; Garrido, J.L. Analysis of the Spatial Representativeness of Rural Background Monitoring Stations in Spain. Atmos. Pollut. Res. 2014, 5, 779–788. [Google Scholar] [CrossRef]
- Vitali, L.; Morabito, A.; Adani, M.; Assennato, G.; Ciancarella, L.; Cremona, G.; Giua, R.; Pastore, T.; Piersanti, A.; Righini, G.; et al. A Lagrangian Modelling Approach to Assess the Representativeness Area of an Industrial Air Quality Monitoring Station. Atmos. Pollut. Res. 2016, 7, 990–1003. [Google Scholar] [CrossRef]
- Liu, S.; Su, H.; Tian, J.; Wang, W. An Analysis of Spatial Representativeness of Air Temperature Monitoring Stations. Theor. Appl. Climatol. 2018, 132, 857–865. [Google Scholar] [CrossRef]
- The People’s Government of Lin’an District. Lin’an Yearbook 2021; The People’s Government of Lin’an District: Hangzhou, China, 2021.
- Fang, S.-X.; Zhou, L.-X.; Masarie, K.A.; Xu, L.; Rella, C.W. Study of Atmospheric CH4 Mole Fractions at Three WMO/GAW Stations in China. J. Geophys. Res. Atmos. 2013, 118, 4874–4886. [Google Scholar] [CrossRef]
- Zellweger, C.; Steinbacher, M.; Buchmann, B. Evaluation of New Laser Spectrometer Techniques for In-Situ Carbon Monoxide Measurements. Atmos. Meas. Tech. 2012, 5, 2555–2567. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Kaufmann, Y.J.; Hall, D.K.; Bodhaine, B.A.; Dutton, E.G.; Harris, J.M. The Aerosol at Barrow, Alaska: Long-Term Trends and Source Locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-Based Software That Uses Various Trajectory Statistical Analysis Methods to Identify Potential Sources from Long-Term Air Pollution Measurement Data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS Reanalysis of Atmospheric Composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Wagner, A.; Bennouna, Y.; Blechschmidt, A.-M.; Brasseur, G.; Chabrillat, S.; Christophe, Y.; Errera, Q.; Eskes, H.; Flemming, J.; Hansen, K.M.; et al. Comprehensive Evaluation of the Copernicus Atmosphere Monitoring Service (CAMS) Reanalysis against Independent Observations: Reactive Gases. Elem. Sci. Anthr. 2021, 9, 00171. [Google Scholar] [CrossRef]
- Flemming, J.; Benedetti, A.; Inness, A.; Engelen, R.J.; Jones, L.; Huijnen, V.; Remy, S.; Parrington, M.; Suttie, M.; Bozzo, A.; et al. The CAMS Interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for 2003–2015. Atmos. Chem. Phys. 2017, 17, 1945–1983. [Google Scholar] [CrossRef]
- Langerock, B.; Arola, A.; Basart, S.; Benedictow, A.; Bennouna, Y.; Blechschmidt, A.-M.; Bouarar, I.; Cuevas, E.; Errera, Q.; Eskes, H.J.; et al. Validation Report of the CAMS Near-Real-Time Global Atmospheric Composition Service Period March–May 2022; European Comission: Bruxelles, Belgium, 2022. [Google Scholar] [CrossRef]
- Schoenhardt, A.; Arola, A.; Benedictow, A.; Bennouna, Y.; Bouarar, I.; Cuevas, E.; Errera, Q.; Eskes, H.J.; Griesfeller, J.; Basart, S.; et al. Validation Report of the CAMS Near-Real-Time Global Atmospheric Composition Service Period September–November 2022; European Comission: Bruxelles, Belgium, 2023. [Google Scholar]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An Extended Time Series (2000–2018) of Global NPP-VIIRS-like Nighttime Light Data from a Cross-Sensor Calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative Estimation of Urbanization Dynamics Using Time Series of DMSP/OLS Nighttime Light Data: A Comparative Case Study from China’s Cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Zhao, K.; Imhoff, M.; Thomson, A.; Bond-Lamberty, B.; Asrar, G.R.; Zhang, X.; He, C.; Elvidge, C.D. A Global Map of Urban Extent from Nightlights. Environ. Res. Lett. 2015, 10, 054011. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from Heaven: An Estimate of the Global Human Population Using Night-Time Satellite Imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [Google Scholar] [CrossRef]
- WDCGG (World Data Centre for Greenhouse Gases). Available online: https://gaw.kishou.go.jp/publications/summary (accessed on 20 December 2024).
- Qi, H.; Lin, W.; Xu, X.; Yu, X.; Ma, Q. Significant Downward Trend of SO2 Observed from 2005 to 2010 at a Background Station in the Yangtze Delta Region, China. Sci. China Chem. 2012, 55, 1451–1458. [Google Scholar] [CrossRef]
- Guo, H.; Wang, T.; Simpson, I.J.; Blake, D.R.; Yu, X.M.; Kwok, Y.H.; Li, Y.S. Source Contributions to Ambient VOCs and CO at a Rural Site in Eastern China. Atmos. Environ. 2004, 38, 4551–4560. [Google Scholar] [CrossRef]
- Ou-Yang, C.-F.; Lin, N.-H.; Lin, C.-C.; Wang, S.-H.; Sheu, G.-R.; Lee, C.-T.; Schnell, R.C.; Lang, P.M.; Kawasato, T.; Wang, J.-L. Characteristics of Atmospheric Carbon Monoxide at a High-Mountain Background Station in East Asia. Atmos. Environ. 2014, 89, 613–622. [Google Scholar] [CrossRef]
- Wang, H.; Yu, D.; Zang, K.; Hong, H.; Qiu, S.; Xiong, H.; Li, J.; Qin, X.; Jiang, K.; Fang, S. Characteristics of CO concentration and analysis of transport pathways at the Longfengshan background atmosphere station. J. Environ. Sci. 2022, 42, 392–400. [Google Scholar] [CrossRef]
- Zhao, Z.; He, Q.; Lu, Z.; Zhao, Q.; Wang, J. Analysis of Atmospheric CO2 and CO at Akedala Atmospheric Background Observation Station, a Regional Station in Northwestern China. Int. J. Environ. Res. Public Health 2022, 19, 6948. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Kanaya, Y.; Park, S.-M.; Matsuki, A.; Sadanaga, Y.; Kim, S.-W.; Uno, I.; Pan, X.; Lee, M.; Kim, H.; et al. Regional Variability in Black Carbon and Carbon Monoxide Ratio from Long-Term Observations over East Asia: Assessment of Representativeness for Black Carbon (BC) and Carbon Monoxide (CO) Emission Inventories. Atmos. Chem. Phys. 2020, 20, 83–98. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, M.; Han, Z. Model Analysis of Seasonal Variations in Tropospheric Ozone and Carbon Monoxide over East Asia. Adv. Atmos. Sci. 2009, 26, 312–318. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Han, H.; Zhang, Y.; Jiang, Z.; Wang, H.; Meng, L.; Li, Y.C.; Liu, Y. Satellite-Observed Variations and Trends in Carbon Monoxide over Asia and Their Sensitivities to Biomass Burning. Remote Sens. 2020, 12, 830. [Google Scholar] [CrossRef]
- Sikder, H.A.; Suthawaree, J.; Kato, S.; Kajii, Y. Surface Ozone and Carbon Monoxide Levels Observed at Oki, Japan: Regional Air Pollution Trends in East Asia. J. Environ. Manag. 2011, 92, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Suthawaree, J.; Kato, S.; Takami, A.; Kadena, H.; Toguchi, M.; Yogi, K.; Hatakeyama, S.; Kajii, Y. Observation of Ozone and Carbon Monoxide at Cape Hedo, Japan: Seasonal Variation and Influence of Long-Range Transport. Atmos. Environ. 2008, 42, 2971–2981. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Z.; Han, T.; Quan, W.; Wang, J.; Zhou, H.; He, D.; Dong, F. Long-Term Declining in Carbon Monoxide (CO) at a Rural Site of Beijing during 2006–2018 Implies the Improved Combustion Efficiency and Effective Emission Control. J. Environ. Sci. 2022, 115, 432–442. [Google Scholar] [CrossRef]
- Ou-Yang, C.-F.; Hsieh, H.-C.; Wang, S.-H.; Lin, N.-H.; Lee, C.-T.; Sheu, G.-R.; Wang, J.-L. Influence of Asian Continental Outflow on the Regional Background Ozone Level in Northern South China Sea. Atmos. Environ. 2013, 78, 144–153. [Google Scholar] [CrossRef]
- Chiang, C.-K.; Fan, J.-F.; Li, J.; Chang, J.S. Impact of Asian Continental Outflow on the Springtime Ozone Mixing Ratio in Northern Taiwan. J. Geophys. Res. Atmos. 2009, 114, D24304. [Google Scholar] [CrossRef]
- Cheung, V.T.F.; Wang, T. Observational Study of Ozone Pollution at a Rural Site in the Yangtze Delta of China. Atmos. Environ. 2001, 35, 4947–4958. [Google Scholar] [CrossRef]
- Pan, X.L.; Kanaya, Y.; Wang, Z.F.; Liu, Y.; Pochanart, P.; Akimoto, H.; Sun, Y.L.; Dong, H.B.; Li, J.; Irie, H.; et al. Correlation of Black Carbon Aerosol and Carbon Monoxide in the High-Altitude Environment of Mt. Huang in Eastern China. Atmos. Chem. Phys. 2011, 11, 9735–9747. [Google Scholar] [CrossRef]
- Gao, J.; Wang, T.; Ding, A.; Liu, C. Observational Study of Ozone and Carbon Monoxide at the Summit of Mount Tai (1534 m a.s.l.) in Central-Eastern China. Atmos. Environ. 2005, 39, 4779–4791. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Y.; Qi, B.; Ma, Q.; Zang, K.; Lin, Y.; Liu, S.; Pan, F.; Li, S.; Guo, P.; et al. Atmospheric CO2 in the Megacity Hangzhou, China: Urban-Suburban Differences, Sources and Impact Factors. Sci. Total Environ. 2024, 926, 171635. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhan, Q.; Guo, H. The Morphology, Dynamics and Potential Hotspots of Land Surface Temperature at a Local Scale in Urban Areas. Remote Sens. 2016, 8, 18. [Google Scholar] [CrossRef]
- Hu, C.; Liu, S.; Wang, Y.; Zhang, M.; Xiao, W.; Wang, W.; Xu, J. Anthropogenic CO2 Emissions from a Megacity in the Yangtze River Delta of China. Environ. Sci. Pollut. Res. 2018, 25, 23157–23169. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.a.K.; Rasmussen, R.A. Global Decrease in Atmospheric Carbon Monoxide Concentration. Nature 1994, 370, 639–641. [Google Scholar] [CrossRef]
- Wu, C.; Murray, A.T. Estimating Impervious Surface Distribution by Spectral Mixture Analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
Site | Lat. (°N) | Lon. (°E) | Altitude (m a.s.l) | Time of Observation | Average CO Concentration | Reference |
---|---|---|---|---|---|---|
DMS China | 30.01 | 119.00 | 1483 | September 2020–January 2022 | 233.4 ± 3.8 ppb | This study |
Lin’an (LAN) China | 30.18 | 119.44 | 138 | September 2010–May 2017 | 372.5 ± 0.6 ppb | [17] |
Lulin China Taiwan | 23.47 | 120.87 | 2862 | April 2006–April 2011 | 129.3 ± 46.6 ppb | [42] |
Mt. Waliguan China | 36.28 | 100.89 | 3810 | 2019 | 110.7 ± 0.2 ppb | [16] |
Shangdianzi China | 40.65 | 117.12 | 293.3 | December 2011–May 2017 | 159.4 ± 0.4 ppb | [17] |
Longfengshan China | 44.44 | 127.36 | 330.5 | January 2017–November 2019 | 199.9 ± 0.9 ppb | [43] |
Shangri-La China | 28.01 | 99.73 | 3580 | 2013 | 109.0 ± 1.0 ppb | [15] |
Akedala China | 47.10 | 87.93 | 563.3 | September 2009–December 2019 | 158.0 ± 13.4 ppb | [44] |
Gosan South Korea | 33.28 | 126.17 | 71.3 | May 2012–April 2015 | 190.1 ± 49.5 ppb | [45] |
Yonagunijima Japan | 24.47 | 123.02 | 30 | 2004 | 140.0 ± 41.2 ppb | [46] |
Cluster | Average CO (Unit: ppb) (Percentage) | |||
---|---|---|---|---|
Figure 9: 1-Day | Figure 10: 3-Day | Figure 8: Specified Time | ||
Spring | 1 | 326.3 ± 12.6 (15.9%) | 285.0 ± 8.8 (25.1%) | 355.0 ± 26.9 (15.8%) |
2 | 290.0 ± 8.0 (32.7%) | 302.1 ± 8.4 (35.6%) | 296.4 ± 16.6 (37.9%) | |
3 | 264.8 ± 5.9 (51.4%) | 266.8 ± 6.8 (39.3%) | 262.4 ± 13.0 (46.3%) | |
Summer | 1 | 157.7 ± 6.2 (10.6%) | 162.9 ± 6.0 (13.9%) | 159.7 ± 14.9 (11.0%) |
2 | 138.6 ± 7.3 (24.9%) | 156.5 ± 6.2 (28.9%) | 157.8 ± 14.2 (29.5%) | |
3 | 149.5 ± 2.9 (34.2%) | 147.9 ± 2.5 (35.9%) | 151.6 ± 4.9 (34.6%) | |
4 | 170.6 ± 3.7 (30.4%) | 164.9 ± 4.7 (21.4%) | 169.4 ± 7.6 (24.8%) | |
Autumn | 1 | 279.3 ± 7.8 (22.0%) | 288.0 ± 6.0 (29.1%) | 288.1 ± 12.6 (24.1%) |
2 | 250.1 ± 4.1 (40.8%) | 244.8 ± 4.7 (25.7%) | 258.5 ± 6.2 (45.6%) | |
3 | 206.8 ± 7.8 (7.0%) | 225.1 ± 6.9 (15.4%) | 213.5 ± 14.2 (7.2%) | |
4 | 223.0 ± 3.8 (30.2%) | 216.0 ± 3.7 (29.8%) | 228.7 ± 6.3 (23.1%) | |
Winter | 1 | 321.5 ± 11.2 (25.3%) | 299.2 ± 9.4 (29.3%) | 329.6 ± 18.6 (28.2%) |
2 | 270.6 ± 7.3 (33.8%) | 280.2 ± 8.6 (27.2%) | 293.1 ± 14.5 (35.9%) | |
3 | 278.2 ± 8.6 (20.3%) | 286.9 ± 8.1 (25.4%) | 307.1 ± 24.1 (10.1%) | |
4 | 260.9 ± 7.2 (20.7%) | 252.7 ± 7.7 (18.1%) | 280.7 ± 12.0 (25.9%) |
Class | |||||||
---|---|---|---|---|---|---|---|
Cropland | Forest | Shrub | Grassland | Water | Impervious | Barren | |
DMS | 4.06 | 95.33 | 0.01 | 0.02 | 0.03 | 0.50% | - |
LAN | 20.71 | 71.84 | - | - | 1.19 | 6.00% | - |
LFS | 46.27 | 49.98 | - | 0.02 | 1.73 | - | - |
SDZ | 15.28 | 73.19 | 0.06 | 3.98 | 3.65 | - | - |
WLG | 5.54 | 0.02 | 0.09 | 74.27 | 0.39 | - | 19.70 |
Stations | Buffer Radius (°) | Well-Represented Percentage (%) | CO Averages (ppb) |
---|---|---|---|
DMS | In situ | - | 233.4 ± 3.8 |
CAMS | 0.75 | 78.2 | 261.3 ± 4.0 |
1.50 | 79.4 | 256.3 ± 3.7 | |
2.25 | 81.1 | 251.8 ± 3.4 | |
3.00 | 82.3 | 246.5 ± 3.2 | |
3.75 | 82.7 | 240.5 ± 2.9 | |
4.50 | 82.8 | 236.5 ± 2.7 | |
5.25 | 82.7 | 234.2 ± 2.6 | |
6.00 | 82.2 | 233.2 ± 2.4 | |
6.75 | 82.0 | 234.1 ± 2.3 | |
7.50 | 81.8 | 235.3 ± 2.2 | |
8.25 | 81.1 | 237.4 ± 2.1 | |
9.00 | 80.3 | 237.2 ± 2.1 | |
9.75 | 79.5 | 235.2 ± 2.0 | |
10.50 | 78.8 | 233.6 ± 2.0 | |
11.25 | 78.4 | 232.5 ± 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Li, S.; Yu, Y.; Lu, M.; Chen, B.; Chen, Y.; Zang, K.; Liu, S.; Qi, B.; Fang, S. A New Regional Background Atmospheric Station in the Yangtze River Delta Region for Carbon Monoxide: Assessment of Spatiotemporal Characteristics and Regional Significance. Atmosphere 2025, 16, 101. https://doi.org/10.3390/atmos16010101
Lin Y, Li S, Yu Y, Lu M, Chen B, Chen Y, Zang K, Liu S, Qi B, Fang S. A New Regional Background Atmospheric Station in the Yangtze River Delta Region for Carbon Monoxide: Assessment of Spatiotemporal Characteristics and Regional Significance. Atmosphere. 2025; 16(1):101. https://doi.org/10.3390/atmos16010101
Chicago/Turabian StyleLin, Yi, Shan Li, Yan Yu, Meijing Lu, Bingjiang Chen, Yuanyuan Chen, Kunpeng Zang, Shuo Liu, Bing Qi, and Shuangxi Fang. 2025. "A New Regional Background Atmospheric Station in the Yangtze River Delta Region for Carbon Monoxide: Assessment of Spatiotemporal Characteristics and Regional Significance" Atmosphere 16, no. 1: 101. https://doi.org/10.3390/atmos16010101
APA StyleLin, Y., Li, S., Yu, Y., Lu, M., Chen, B., Chen, Y., Zang, K., Liu, S., Qi, B., & Fang, S. (2025). A New Regional Background Atmospheric Station in the Yangtze River Delta Region for Carbon Monoxide: Assessment of Spatiotemporal Characteristics and Regional Significance. Atmosphere, 16(1), 101. https://doi.org/10.3390/atmos16010101