Temporal and Spatial Assessment of Glacier Elevation Change in the Kangri Karpo Region Using ASTER Data from 2000 to 2024
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. ASTER L1A V003
2.2.2. TanDEM-X DEM
2.2.3. Sentinel-2
2.2.4. Auxiliary Data
3. Method
3.1. Generation and Co-Registration of ASTER DEMs
3.2. Establishment of the Elevation Time Series
4. Results
4.1. Accuracy Analysis with ICESat-2
4.2. Temporal Change of Glacier Elevation from 2000 to 2024
4.3. Spatial Variation of Glacier Surface Elevation
5. Discussion
5.1. Variations in Elevation Change Across Different Glaciers
5.2. Influences of Climate Factors in Kangri Karpo
5.3. Comparison with Previous Mass Balance Estimates in Kangri Karpo
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
RGI 6.0 ID | Basin | Area (km2) | Elevation Change Rate (m yr−1) |
---|---|---|---|
RGI60-15.11886 | 5O282B | 0.065 | −0.50 |
RGI60-15.11888 | 5O282B | 28.821 | −0.61 |
RGI60-15.11897 | 5O282B | 6.416 | −0.59 |
RGI60-15.11899 | 5O282B | 1.306 | −0.53 |
RGI60-15.11901 | 5O282B | 0.623 | −0.91 |
RGI60-15.11904 | 5O282B | 8.603 | −0.66 |
RGI60-15.11906 | 5O282B | 5.77 | −0.66 |
RGI60-15.11907 | 5O282B | 0.413 | −0.99 |
RGI60-15.11908 | 5O282B | 0.335 | −0.43 |
RGI60-15.11909 | 5O282B | 179.589 | −0.74 |
RGI60-15.11910 | 5O282B | 0.352 | −0.99 |
RGI60-15.11911 | 5O282B | 0.222 | −0.83 |
RGI60-15.11923 | 5O282B | 6.531 | −1.02 |
RGI60-15.11926 | 5O282B | 96.283 | −0.75 |
RGI60-15.11929 | 5O282B | 0.174 | −0.55 |
RGI60-15.11930 | 5O282B | 6.138 | −1.08 |
RGI60-15.11932 | 5O282B | 0.157 | −0.94 |
RGI60-15.11936 | 5O282B | 0.024 | −0.17 |
RGI60-15.11937 | 5O282B | 0.038 | −0.01 |
RGI60-15.11938 | 5O282B | 1.943 | −0.30 |
RGI60-15.11939 | 5O282B | 0.035 | 0.13 |
RGI60-15.11940 | 5O282B | 1.055 | −0.34 |
RGI60-15.11941 | 5O282B | 1.05 | −0.50 |
RGI60-15.11943 | 5O282B | 2.503 | −1.03 |
RGI60-15.11944 | 5O282B | 1.942 | −0.85 |
RGI60-15.11946 | 5O282B | 0.129 | −0.23 |
RGI60-15.11947 | 5O282B | 0.155 | −0.91 |
RGI60-15.11948 | 5O282B | 0.021 | −0.93 |
RGI60-15.11949 | 5O282B | 4.324 | −0.68 |
RGI60-15.11950 | 5O282B | 0.329 | −0.49 |
RGI60-15.11951 | 5O282B | 0.044 | −0.90 |
RGI60-15.11952 | 5O282B | 0.028 | −0.83 |
RGI60-15.11953 | 5O282B | 0.29 | −0.80 |
RGI60-15.11954 | 5O282B | 2.016 | −1.26 |
RGI60-15.11955 | 5O282B | 3.087 | −1.09 |
RGI60-15.11956 | 5O282B | 6.597 | −0.92 |
RGI60-15.11957 | 5O282B | 25.376 | −1.32 |
RGI60-15.11958 | 5O282B | 0.751 | −0.54 |
RGI60-15.11959 | 5O282B | 0.101 | −0.74 |
RGI60-15.11960 | 5O282B | 0.099 | −0.25 |
RGI60-15.11961 | 5O282B | 1.108 | −0.60 |
RGI60-15.11962 | 5O282B | 0.23 | −1.20 |
RGI60-15.11963 | 5O282B | 4.433 | −0.83 |
RGI60-15.11964 | 5O282B | 0.354 | −0.72 |
RGI60-15.11965 | 5O282B | 0.311 | −0.29 |
RGI60-15.11966 | 5O282B | 0.073 | −0.28 |
RGI60-15.11967 | 5O282B | 0.374 | −0.66 |
RGI60-15.11968 | 5O282B | 0.119 | −0.74 |
RGI60-15.11969 | 5O282B | 0.427 | −0.61 |
RGI60-15.11970 | 5O282B | 0.79 | −0.76 |
RGI60-15.11971 | 5O282B | 1.053 | −0.81 |
RGI60-15.11972 | 5O282B | 0.305 | −1.00 |
RGI60-15.11973 | 5O282B | 11.858 | −0.82 |
RGI60-15.11974 | 5O282B | 0.211 | −0.92 |
RGI60-15.11975 | 5O282B | 15.236 | −1.04 |
RGI60-15.11976 | 5O282B | 0.295 | −0.78 |
RGI60-15.12500 | 5O291B | 28.131 | −0.21 |
RGI60-15.12520 | 5O291B | 5.952 | 0.34 |
RGI60-15.12522 | 5O291B | 0.199 | −0.36 |
RGI60-15.12526 | 5O291B | 10.513 | −0.03 |
RGI60-15.12529 | 5O291B | 1.401 | −0.08 |
RGI60-15.12539 | 5O291B | 0.136 | 0.35 |
RGI60-15.12540 | 5O291B | 13.448 | −0.52 |
RGI60-15.12550 | 5O291B | 2.171 | −0.33 |
RGI60-15.12553 | 5O291B | 6.639 | −0.15 |
RGI60-15.12554 | 5O291B | 0.116 | −0.06 |
RGI60-15.12555 | 5O291B | 0.025 | −0.88 |
RGI60-15.12556 | 5O291B | 0.056 | −0.80 |
RGI60-15.12557 | 5O291B | 0.324 | −0.18 |
RGI60-15.12558 | 5O291B | 0.156 | −0.59 |
RGI60-15.12559 | 5O291B | 0.985 | −0.72 |
RGI60-15.12560 | 5O291B | 0.466 | −0.80 |
RGI60-15.12561 | 5O291B | 1.157 | −0.78 |
RGI60-15.12562 | 5O291B | 0.132 | −0.11 |
RGI60-15.12563 | 5O291B | 0.597 | −0.67 |
RGI60-15.12564 | 5O291B | 0.425 | −0.39 |
RGI60-15.12566 | 5O291B | 17.969 | −0.52 |
RGI60-15.12567 | 5O291B | 0.336 | −0.34 |
RGI60-15.12575 | 5O291B | 0.306 | −0.46 |
RGI60-15.12579 | 5O291B | 5.931 | −0.15 |
RGI60-15.12582 | 5O291B | 2.088 | −0.87 |
RGI60-15.12585 | 5O291B | 3.367 | −0.36 |
RGI60-15.12586 | 5O291B | 2.933 | −0.81 |
RGI60-15.12587 | 5O291B | 11.493 | −0.19 |
RGI60-15.12588 | 5O291B | 0.983 | −0.68 |
RGI60-15.12589 | 5O291B | 0.607 | −0.55 |
RGI60-15.12590 | 5O291B | 0.115 | −0.64 |
RGI60-15.12591 | 5O291B | 0.074 | 0.10 |
RGI60-15.12592 | 5O291B | 0.188 | −1.20 |
RGI60-15.12593 | 5O291B | 2.271 | −0.97 |
RGI60-15.12594 | 5O291B | 18.802 | −0.72 |
RGI60-15.12596 | 5O291B | 1.175 | −1.15 |
RGI60-15.12597 | 5O291B | 0.047 | 0.44 |
RGI60-15.12599 | 5O291B | 0.515 | −0.08 |
RGI60-15.12603 | 5O291B | 1.938 | 0.00 |
RGI60-15.12605 | 5O291B | 20.811 | −0.77 |
RGI60-15.12611 | 5O291B | 1.091 | −0.57 |
RGI60-15.12613 | 5O291B | 12.417 | −2.43 |
RGI60-15.12614 | 5O291B | 1.181 | −0.32 |
RGI60-15.12615 | 5O291B | 1.329 | −0.43 |
RGI60-15.12619 | 5O291B | 0.263 | −0.63 |
RGI60-15.12622 | 5O291B | 5.189 | −1.13 |
RGI60-15.12624 | 5O291B | 5.012 | −0.54 |
RGI60-15.12625 | 5O291B | 0.33 | −1.01 |
RGI60-15.12627 | 5O291B | 6.846 | −0.66 |
RGI60-15.12628 | 5O291B | 0.876 | −0.40 |
RGI60-15.12633 | 5O291B | 0.535 | −0.41 |
RGI60-15.12636 | 5O291B | 1.48 | −0.12 |
RGI60-15.12640 | 5O291B | 0.466 | −0.60 |
RGI60-15.12642 | 5O291B | 0.013 | −0.32 |
RGI60-15.12643 | 5O291B | 0.108 | −0.39 |
RGI60-15.12644 | 5O291B | 55.105 | −1.15 |
RGI60-15.12645 | 5O291B | 0.516 | −0.17 |
RGI60-15.12648 | 5O291B | 0.272 | −0.44 |
RGI60-15.12650 | 5O291B | 0.139 | −0.73 |
RGI60-15.12655 | 5O291B | 0.928 | −0.70 |
RGI60-15.12657 | 5O291B | 0.326 | −0.68 |
RGI60-15.12660 | 5O291B | 0.385 | −0.88 |
RGI60-15.12664 | 5O291B | 0.919 | −0.48 |
RGI60-15.12665 | 5O291B | 0.108 | −0.91 |
RGI60-15.12671 | 5O291B | 0.629 | −0.72 |
RGI60-15.12673 | 5O291B | 0.207 | −0.75 |
RGI60-15.12677 | 5O291B | 1.186 | −0.72 |
RGI60-15.12679 | 5O291B | 0.44 | −0.48 |
RGI60-15.12682 | 5O291B | 0.115 | −1.03 |
RGI60-15.12686 | 5O291B | 10.256 | −0.95 |
RGI60-15.12693 | 5O291B | 14.457 | −1.08 |
References
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 3–32. [Google Scholar]
- Bhattacharya, A.; Bolch, T.; Mukherjee, K.; King, O.; Menounos, B.; Kapitsa, V.; Neckel, N.; Yang, W.; Yao, T. High Mountain Asian Glacier Response to Climate Revealed by Multi-Temporal Satellite Observations since the 1960s. Nat. Commun. 2021, 12, 4133. [Google Scholar] [CrossRef] [PubMed]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and Vulnerability of the World’s Water Towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, H.D. Asia’s Shrinking Glaciers Protect Large Populations from Drought Stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ke, C.-Q.; Zhou, X.; Shen, X.; Yu, X.; Lhakpa, D. Glacier Mass-Balance Estimates over High Mountain Asia from 2000 to 2021 Based on ICESat-2 and NASADEM. J. Glaciol. 2023, 69, 500–512. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.R.; Arendt, A.; Osmanoglu, B. A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance. Front. Earth Sci. 2020, 7, 363. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting Patterns of Early Twenty-First-Century Glacier Mass Change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Shijin, W.; Yanjun, C.; Yanqiang, W. Spatiotemporal Dynamic Characteristics of Typical Temperate Glaciers in China. Sci. Rep. 2021, 11, 657. [Google Scholar] [CrossRef]
- Wu, K.; Liu, S.; Xu, J.; Zhu, Y.; Liu, Q.; Jiang, Z.; Wei, J. Spatiotemporal Variability of Surface Velocities of Monsoon Temperate Glaciers in the Kangri Karpo Mountains, Southeastern Tibetan Plateau. J. Glaciol. 2021, 67, 186–191. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, S. Estimation on the Response of Glaciers in China to the Global Warming in the 21st Century. Chin. Sci. Bull. 2000, 45, 668–672. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Z.; Theakstone, W.H.; Chen, T.; Yao, T.; Pang, H. Changing Features of the Climate and Glaciers in China’s Monsoonal Temperate Glacier Region. J. Geophys. Res. Atmos. 2003, 108, 4530. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, M.; Ren, B. An Introduction to the Glaciers in China; Science Press: Beijing, China, 1988. [Google Scholar]
- Li, J.; Zheng, B.; Yang, X. Glaciers in Tibet; Science Press: Beijing, China, 1986; pp. 140–148. [Google Scholar]
- Liu, S.; Shangguan, D.; Ding, Y.; Han, H.; Zhang, Y.; Wang, J.; Xie, C.; Ding, L.; Li, G. Glacier Variations since the Early 20th Century in the Gangrigabu Range, Southeast Tibetan Plateau. J. Glaciol. Geocryol. 2005, 27, 55–63. [Google Scholar]
- Yang, W.; Yao, T.; Xu, B.; Wu, G.; Ma, L.; Xin, X. Quick Ice Mass Loss and Abrupt Retreat of the Maritime Glaciers in the Kangri Karpo Mountains, Southeast Tibetan Plateau. Chin. Sci. Bull. 2008, 53, 2547–2551. [Google Scholar] [CrossRef]
- An, B.; Wang, W.; Yang, W.; Wu, G.; Guo, Y.; Zhu, H.; Gao, Y.; Bai, L.; Zhang, F.; Zeng, C.; et al. Process, Mechanisms, and Early Warning of Glacier Collapse-Induced River Blocking Disasters in the Yarlung Tsangpo Grand Canyon, Southeastern Tibetan Plateau. Sci. Total Environ. 2022, 816, 151652. [Google Scholar] [CrossRef]
- Che, Y.; Wang, S.; Wei, Y.; Pu, T.; Ma, X. Rapid Changes to Glaciers Increased the Outburst Flood Risk in Guangxieco Proglacial Lake in the Kangri Karpo Mountains, Southeast Qinghai-Tibetan Plateau. Nat. Hazard. 2022, 110, 2163–2184. [Google Scholar] [CrossRef]
- Treichler, D.; Kääb, A. ICESat Laser Altimetry over Small Mountain Glaciers. Cryosphere 2016, 10, 2129–2146. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, W. Seasonal Cycles of High Mountain Asia Glacier Surface Elevation Detected by ICESat-2. J. Geophys. Res. Atmos. 2022, 127, e2022JD037501. [Google Scholar] [CrossRef]
- Shen, C.; Jia, L.; Ren, S. Inter- and Intra-Annual Glacier Elevation Change in High Mountain Asia Region Based on ICESat-1&2 Data Using Elevation-Aspect Bin Analysis Method. Remote Sens. 2022, 14, 1630. [Google Scholar] [CrossRef]
- Chao, N.; Wang, Z.; Hwang, C.; Jin, T.; Cheng, Y.-S. Decline of Geladandong Glacier Elevation in Yangtze River’s Source Region: Detection by ICESat and Assessment by Hydroclimatic Data. Remote Sens. 2017, 9, 75. [Google Scholar] [CrossRef]
- Hwang, C.; Wei, S.-H.; Cheng, Y.-S.; Abulaitijiang, A.; Andersen, O.B.; Chao, N.; Peng, H.-Y.; Tseng, K.-H.; Lee, J.-C. Glacier and Lake Level Change from TOPEX-Series and Cryosat-2 Altimeters in Tanggula: Comparison with Satellite Imagery. TAO Terr. Atmos. Ocean. Sci. 2021, 32, 1–20. [Google Scholar] [CrossRef]
- Yi, S.; Song, C.; Heki, K.; Kang, S.; Wang, Q.; Chang, L. Satellite-Observed Monthly Glacier and Snow Mass Changes in Southeast Tibet: Implication for Substantial Meltwater Contribution to the Brahmaputra. Cryosphere 2020, 14, 2267–2281. [Google Scholar] [CrossRef]
- Tseng, K.-H.; Chang, C.-P.; Shum, C.K.; Kuo, C.-Y.; Liu, K.-T.; Shang, K.; Jia, Y.; Sun, J. Quantifying Freshwater Mass Balance in the Central Tibetan Plateau by Integrating Satellite Remote Sensing, Altimetry, and Gravimetry. Remote Sens. 2016, 8, 441. [Google Scholar] [CrossRef]
- Wu, K.; Liu, S.; Jiang, Z.; Xu, J.; Wei, J.; Guo, W. Recent Glacier Mass Balance and Area Changes in the Kangri Karpo Mountains from DEMs and Glacier Inventories. Cryosphere 2018, 12, 103–121. [Google Scholar] [CrossRef]
- Ren, S.; Menenti, M.; Jia, L.; Zhang, J.; Zhang, J. Glacier Mass Balance in the Kangri Karpo Mountains by ZY-3 Stereo Images and SRTM DEMs Between 2000 and 2017. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4153–4156. [Google Scholar]
- Nuth, C.; Kääb, A. Co-Registration and Bias Corrections of Satellite Elevation Data Sets for Quantifying Glacier Thickness Change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Briggs, K.; Kääb, A.; McMillan, M.; McNabb, R.; Nagler, T.; Nuth, C.; Rastner, P.; Strozzi, T.; et al. Error Sources and Guidelines for Quality Assessment of Glacier Area, Elevation Change, and Velocity Products Derived from Satellite Data in the Glaciers_cci Project. Remote Sens. Environ. 2017, 203, 256–275. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Impact of Resolution and Radar Penetration on Glacier Elevation Changes Computed from DEM Differencing. J. Glaciol. 2012, 58, 419–422. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Neckel, N.; Kropáček, J.; Bolch, T.; Hochschild, V. Glacier Mass Changes on the Tibetan Plateau 2003–2009 Derived from ICESat Laser Altimetry Measurements. Environ. Res. Lett. 2014, 9, 014009. [Google Scholar] [CrossRef]
- Wang, Q.; Yi, S.; Sun, W. Continuous Estimates of Glacier Mass Balance in High Mountain Asia Based on ICESat-1,2 and GRACE/GRACE Follow-On Data. Geophys. Res. Lett. 2021, 48, e2020GL090954. [Google Scholar] [CrossRef]
- Zhao, F.; Long, D.; Li, X.; Huang, Q.; Han, P. Rapid Glacier Mass Loss in the Southeastern Tibetan Plateau since the Year 2000 from Satellite Observations. Remote Sens. Environ. 2022, 270, 112853. [Google Scholar] [CrossRef]
- Yang, W.; Yao, T.; Xu, B.; Ma, L.; Wang, Z.; Wan, M. Characteristics of Recent Temperate Glacier Fluctuations in the Parlung Zangbo River Basin, Southeast Tibetan Plateau. Chin. Sci. Bull. 2010, 55, 2097–2102. [Google Scholar] [CrossRef]
- Ren, S.; Menenti, M.; Jia, L.; Zhang, J.; Zhang, J.; Li, X. Glacier Mass Balance in the Nyainqentanglha Mountains between 2000 and 2017 Retrieved from ZiYuan-3 Stereo Images and the SRTM DEM. Remote Sens. 2020, 12, 864. [Google Scholar] [CrossRef]
- RGI Consortium. Randolph Glacier Inventory-A Dataset of Global Glacier Outlines. (NSIDC-0770, Version 6); [Data Set]; National Snow and Ice Data Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Ward, F.K.; Smith, M. The Himalaya East of the Tsangpo. Geogr. J. 1934, 84, 369–394. [Google Scholar] [CrossRef]
- Ma, X.; Wang, S.; Qiong, D.; Yang, Y.; Wei, Y.; Zhou, L. Strategies of Deep Developing the Glacier Tourism Resources in China: A Case Study of the Midui Glacier, Tibet. J. Glaciol. Geocryol. 2019, 41, 1264–1270. [Google Scholar]
- Zhou, L.; Wang, S.; Sun, Z. World’s Glacier Tourism: Development History and Research Progress. J. Glaciol. Geocryol. 2020, 42, 243–253. [Google Scholar]
- Abrams, M.; Hook, S.; Ramachandran, B. ASTER User Handbook, v2: Advanced Spaceborne Thermal Emission and Relection Radiometer; Jet Propulsion Laboratory: Pasadena, CA, USA, 2002. [Google Scholar]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A Temperature and Emissivity Separation Algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Fujisada, H.; Bailey, G.B.; Kelly, G.G.; Hara, S.; Abrams, M.J. ASTER DEM Performance. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2707–2714. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Borla Tridon, D.; Bräutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and Performance Assessment of the Global TanDEM-X Digital Elevation Model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Pitts, K.; Jelley, B.; Robbins, J.; Markel, J.; Popescu, S.; Nelson, R.; Harding, D.; Pederson, D.; Klotz, B.; et al. ATLAS/ICESat-2 L3A Land and Vegetation Height. (ATL08, Version 6); [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2023. [Google Scholar] [CrossRef]
- Girod, L.; Nuth, C.; Kääb, A.; McNabb, R.; Galland, O. MMASTER: Improved ASTER DEMs for Elevation Change Monitoring. Remote Sens. 2017, 9, 704. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Estimating Fractional Snow Cover from MODIS Using the Normalized Difference Snow Index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Jing, Y.; Shen, H.; Li, X.; Guan, X. A Two-Stage Fusion Framework to Generate a Spatio–Temporally Continuous MODIS NDSI Product over the Tibetan Plateau. Remote Sens. 2019, 11, 2261. [Google Scholar] [CrossRef]
- ASTER GDEM Validation Team. ASTER Global DEM Validation—Summary Report. Available online: https://lpdaac.usgs.gov (accessed on 19 September 2024).
- Weifeng, X.; Jun, L.; Dailiang, P.; Jinge, J.; Hongxuan, X.; Hongyue, Y.; Jun, Y. Multi-Source DEM Accuracy Evaluation Based on ICESat-2 in Qinghai-Tibet Plateau, China. Int. J. Digit. Earth 2024, 17, 2297843. [Google Scholar] [CrossRef]
- Yan, X.; Ma, J.; Ma, X.; Wang, S.; Chen, P.; He, Y. Accelerated Glacier Mass Loss with Atmospheric Changes on Mt. Yulong, Southeastern Tibetan Plateau. J. Hydrol. 2021, 603, 126931. [Google Scholar] [CrossRef]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief Communication: Contending Estimates of 2003–2008 Glacier Mass Balance over the Pamir–Karakoram–Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nat. Clim. Change 2012, 2, 663–667. [Google Scholar] [CrossRef]
- WGMS. Fluctuations of Glaciers Database; World Glacier Monitoring Service (WGMS): Zurich, Switzerland, 2024. [Google Scholar]
Study | Region | Period | Elevation Change Rate (m yr−1) | Elevation Change Rate of This Study Mean (m yr−1) |
---|---|---|---|---|
Wu et al. [27] | Kangri Karpo | 2000–2014 | −0.79 ± 0.11 | −0.71 ± 0.33 |
Ren et al. [28] | Kangri Karpo | 2000–2017 | −0.66 ± 0.24 | −0.71 ± 0.28 |
Zhao et al. [35] | Eastern Bomi | 2000–2019 | −1.16 ± 0.29 | −0.74 ± 0.25 |
2011–2020 | −1.14 ± 0.28 | −0.79 ± 0.50 | ||
Hugonnet et al. [32] | Kangri Karpo | 2000–2020 | −0.88 ± 0.35 | −0.73 ± 0.25 |
Kaab et al. [57] | Eastern Nyainqentanglha range | 2003–2008 | −1.34 ± 0.29 | −0.69 ± 0.84 |
Neckel et al. [33] | Eastern Nyainqentanglha range and Hengduan Mountains | 2003–2009 | −0.81 ± 0.32 | −0.70 ± 0.84 |
Gardner et al. [8] | Hengduan Shan | 2003–2009 | −0.40 ± 0.41 | −0.70 ± 0.84 |
Brun et al. [6] | Nyainqentanglha | 2000–2016 | −0.73 ± 0.27 | −0.71 ± 0.32 |
Shean et al. [7] | Nyainqentanglha | 2000–2018 | −0.59 ± 0.18 | −0.72 ± 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Yang, Y.; Hu, J.; Zhang, J.; Li, Z.; Wang, Y. Temporal and Spatial Assessment of Glacier Elevation Change in the Kangri Karpo Region Using ASTER Data from 2000 to 2024. Atmosphere 2025, 16, 110. https://doi.org/10.3390/atmos16010110
Wang Q, Yang Y, Hu J, Zhang J, Li Z, Wang Y. Temporal and Spatial Assessment of Glacier Elevation Change in the Kangri Karpo Region Using ASTER Data from 2000 to 2024. Atmosphere. 2025; 16(1):110. https://doi.org/10.3390/atmos16010110
Chicago/Turabian StyleWang, Qihua, Yuande Yang, Jiayu Hu, Jianglong Zhang, Zuqiang Li, and Yuechen Wang. 2025. "Temporal and Spatial Assessment of Glacier Elevation Change in the Kangri Karpo Region Using ASTER Data from 2000 to 2024" Atmosphere 16, no. 1: 110. https://doi.org/10.3390/atmos16010110
APA StyleWang, Q., Yang, Y., Hu, J., Zhang, J., Li, Z., & Wang, Y. (2025). Temporal and Spatial Assessment of Glacier Elevation Change in the Kangri Karpo Region Using ASTER Data from 2000 to 2024. Atmosphere, 16(1), 110. https://doi.org/10.3390/atmos16010110