Meteorological Anomalies During Earthquake Preparation: A Case Study for the 1995 Kobe Earthquake (M = 7.3) Based on Statistical and Machine Learning-Based Analyses
Abstract
:1. Introduction
2. EQ Studied in This Paper and Solar and Geomagnetic Activity
2.1. Target EQ and AMeDAS Stations
2.2. Solar-Terrestrial Environment
3. Meteorological Parameters from the Japanese AMeDAS Data
3.1. AMeDAS Data Analysis
3.2. Meteorological Parameters Used in This Paper
4. Analysis Results
4.1. Statistical Analysis Based on the Mean and Standard Deviation
4.2. Spatial Distributions of Anomaly Intensities on 10 January 1995
4.3. Detection of EQ-Related Anomalies Using AI (A Combination of NARX and LSTM Models)
- (a)
- Combination of NARX and LSTM
- (b)
- Design of NARX model
- (c)
- Design of LSTM model
- (d)
- Model optimization and evaluation
- (e)
- Bollinger Band Analysis
- (f)
- Analysis Results
5. Discussion
6. Conclusions and Outlook
- (1)
- The two parameters of T/Hum and ACP at midnight have been suggested in order to identify any possible precursors to EQs and a case study has been performed for the famous 1995 Kobe EQ (M = 7.3) on 17 January 1995 as an example. The conventional statistical analysis shows that clear precursors are detected on 10 January 1995, just one week before the EQ in both quantities when we pay particular attention to the time window of short-term EQ prediction (one month before and a few weeks after an EQ). However, when we look at a longer period of about one year including the day of the EQ, three additional extreme anomalies appeared, except in winter, only in the case of T/Hum and their origins are still uncertain. However, ACP is a very stable predictor in such a way that the largest anomaly is detected on 10 January during the whole period of over one year. Further studies of the spatial distributions of both quantities (even though they are a little different from each other) have provided a further support to the close relationship of the anomaly with the EQ. Because these quantities may serve as a proxy of pre-EQ radon emanation, the openly available AMeDAS data from JMA with higher temporal and spatial resolutions will be of potential importance as a possible candidate for real short-term EQ prediction in future.
- (2)
- The above anomaly in both parameters on the same day has been verified with the use of AI machine/deep learning techniques: that is, a hybrid use of NARX and LSTM models, which improves time series prediction accuracy. Further, the AI analysis yielded that the abnormality on 10 January 1995 was greater than that on the other three days. Of course, we recommend the application of these AI techniques to different seismogenic phenomena.
- (3)
- Further, we suggest a combined use of the above two meteorological quantities (T/Hum and ACP) by taking advantage of each parameter for real short-term EQ prediction.
- (4)
- The information of meteorological perturbations on the Earth’s surface will, of course, be of potential significance in elaborating future LAIC studies.
- (5)
- Further statistical research such as more event studies is highly required based on the long-term and multi-station AMeDAS data, leading to the study of the confusion matrix, etc.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayakawa, M. Earthquake prediction studies in Japan. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; AGU Geophysical Monograph 234; Wiley: New York, NY, USA, 2018; pp. 7–18. [Google Scholar]
- Hayakawa, M. Earthquake Prediction with Radio Techniques; Wiley: Singapore, 2015; 294p. [Google Scholar]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. (Eds.) Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; AGU Geophysical Monograph 234; Wiley: New York, NY, USA, 2018; 365p. [Google Scholar]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Boyarchuk, K. Earthquake Precursors in the Atmosphere and Ionosphere: New Concepts; Springer: Dordrecht, The Netherlands, 2022; 294p. [Google Scholar]
- Uyeda, S.; Nagao, T.; Kamogawa, M. Short-term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics 2009, 47, 205–213. [Google Scholar] [CrossRef]
- Hayakawa, M.; Hobara, Y. Current status of seismo-electromagnetics for short-term earthquake prediction. Geomat. Nat. Hazards Risk 2010, 1, 115–155. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Boyarchuk, K. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004; 315p. [Google Scholar]
- Molchanov, O.A.; Hayakawa, M. Seismo Electromagnetics and Related Phenomena: History and Latest Results; TERRAPUB: Tokyo, Japan, 2008; 189p. [Google Scholar]
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Chen, C.S. A statistical investigation of pre-earthquake ionospheric anomaly. J. Geophys. Res. 2006, 111, A05304. [Google Scholar]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Muto, F.; Horie, T.; Maekawa, S.; Hobara, Y.; Rozhnoi, A.A.; Solovieva, M.; Molchanov, O.A. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. J. Geophys. Res. 2010, 115, A09305. [Google Scholar] [CrossRef]
- Parrot, M.; Li, M. Statistical analysis of the ionospheric density recorded by the satellite during seismic activity. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; AGU Monograph; Ouzounov, D., Pulinets, S., Kafatos, M.C., Taylor, P., Eds.; Wiley: New York, NY, USA, 2018; pp. 319–328. [Google Scholar]
- Hayakawa, M.; Molchanov, O. (Eds.) Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; TERRAPUB: Tokyo, Japan, 2002; 477p. [Google Scholar]
- Molchanov, O.; Fedorov, E.; Schekotov, A.; Gordeev, E.; Chebrov, V.; Surkov, V.; Rozhnoi, A.; Andreevsky, S.; Iudin, D.; Yunga, S.; et al. Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere. Nat. Hazards Earth Syst. Sci. 2004, 4, 757–767. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere-atmosphere-ionosphere coupling (LAIC) model—A unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- De Santis, A.; Balasis, G.; Pavón-Carrasco, F.J.; Cianchini, G.; Mandea, M. Potential earthquake precursory pattern from space: The 2015 Nepal event as seen by magnetic Swarm satellites. Earth Planet. Sci. Lett. 2017, 461, 119–126. [Google Scholar] [CrossRef]
- De Santis, A.; Cianchini, G.; Marchetti, D.; Piscini, A.; Sabbagh, D.; Perrone, L.; Campuzano, S.A.; Inan, S. A multiparametric approach to study the preparation phase of the 2019 M7.1 Ridgecrest (California, USA) earthquake. Front. Earth Sci. 2020, 8, 540398. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Jin, S. Anomalous seismo-LAI variations potentially associated with the 2017 Mw = 7.3 Sarpole Zahab (Iran) earthquake from Swarm satellites, GPS-TEC and climatological data. Adv. Space Res. 2019, 64, 143–158. [Google Scholar] [CrossRef]
- Zhang, X.; De Santis, A.; Liu, J.; Campuzano, S.A.; Yang, N.; Cianchini, G.; Ouyang, X.; D’Arcangelo, S.; Yang, M.; De Caro, M.; et al. Pre-earthquake oscillating and accelerating patterns in the lithosphere-atmosphere-ionosphere coupling (LAIC) before the 2022 Luding (China) Ms6.8 earthquake. Remote Sens. 2024, 16, 2381. [Google Scholar] [CrossRef]
- Parrot, M.; Tramutoli, V.; Liu, J.Y.; Pulinets, S.; Ouzounov, D.; Genzaro, N.; Lisi, M.; Hattori, K.; Namgaladze, A. Atmospheric and ionospheric coupling phenomena associated with large earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 197–225. [Google Scholar] [CrossRef]
- Sasmal, S.; Chowdhury, S.; Kundu, S.; Politis, D.Z.; Potirakis, S.M.; Balasis, G.; Hayakawa, M.; Chakrabarti, S.K. Pre-seismic irregularities during the 2020 Samos (Greece) earthquake (M = 6.9) as investigated from multi-parameter approach by ground and space-based techniques. Atmosphere 2021, 12, 1059. [Google Scholar] [CrossRef]
- Hayakawa, M.; Izutsu, J.; Schekotov, A.; Yang, S.S.; Solovieva, M.; Budilova, E. Lithosphere-atmosphere-ionosphere coupling effects based on multiparameter precursor observations for February–March 2021 earthquakes (M~7) in the offshore of Tohoku area of Japan. Geosciences 2021, 11, 481. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Yang, S.S.; Solovieva, M.; Hobara, Y. Multi-Parameter Observations of Seismogenic Phenomena Related to the Tokyo Earthquake (M = 5.9) on 7 October 2021. Geosciences 2022, 12, 265. [Google Scholar] [CrossRef]
- D’Arcangelo, S.; Regi, M.; De Santis, A.; Perrone, L.; Cianchini, G.; Soldani, M.; Piscini, A.; Fidani, C.; Sabbagh, D.; Lepidi, S.; et al. A multiparametric-multilayer comparison of two geophysical events in the Tonga-Kermadec subduction zone: The 2019 M7.2 earthquake and 2022 Hunga Ha’apai eruption. Front. Earth Sci. 2023, 11, 12677411. [Google Scholar] [CrossRef]
- Marchetti, D.; Zhu, Z.; Picsini, A.; Ghamry, E.; Shen, X.; Yan, R.; He, X.; Wang, T.; Chen, W.; Wen, J.; et al. Changes in the lithosphere, atmosphere and ionosphere before and after the Mw = 7.7 Jamaica 2020 earthquake. Remote Sens. Environ. 2024, 307, 114146. [Google Scholar] [CrossRef]
- Hayakawa, M.; Hobara, Y. Integrated analysis of multi-parameter precursors to the Fukushima offshore earthquake (Mj = 7.3) on 13 February 2021 and lithosphere-atmosphere-ionosphere coupling channels. Atmosphere 2024, 15, 1015. [Google Scholar] [CrossRef]
- Sasmal, S.; Chowdhury, S.; Kundu, S.; Ghosh, S.; Politis, A.Z.; Potirakis, S.M.; Hayakawa, M. Multi-parametric study of seismogenic anomalies during the 2021 Crete earthquake (M = 6.0). Ann. Geophys. 2024, 66, 6. [Google Scholar] [CrossRef]
- Cianchini, G.; Calcara, M.; De Santis, A.; Piscini, A.; D’Arcangelo, S.; Fidani, C.; Sabbagh, D.; Orlando, M.; Perrone, L.; Campuzano, S.A.; et al. The preparation phase of the 2023 Kahramanmaras (Turkey) major earthquakes from a multidisciplinary and comparative perspective. Remote Sens. 2024, 16, 2766. [Google Scholar] [CrossRef]
- Conti, L.; Picozza, P.; Sotgiu, A. A critical review of ground based observations of earthquake precursors. Front. Earth Sci. 2021, 9, 676766. [Google Scholar] [CrossRef]
- Picozza, P.; Conti, L.; Sotgiu, A. Looking for earthquake precursors from space: A critical review. Front. Earth Sci. 2021, 9, 676775. [Google Scholar] [CrossRef]
- Chen, A.; Han, P.; Hattori, K. Recent adanves and challenges in the Seismo-electromagnetic study: A brief review. Remote Sens. 2022, 14, 5893. [Google Scholar] [CrossRef]
- Pulinets, S.; Herrera, V.M.V. Earthquake precursors: The physics, identification, and application. Geosciences 2024, 14, 209. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Davidenko, D.; Rozhnoi, A.; Solovieva, M.; Fedun, V.; Dwivedi, B.N.; Rybin, A.; Kafatos, M.; Taylor, P. Transient effects in atmosphere and ionosphere preceding the 2015 M7.8 and M7.3 Gorkha–Nepal earthquakes. Front. Earth Sci. 2021, 9, 757358. [Google Scholar] [CrossRef]
- Kilimenko, M.V.; Kilimenko, V.V.; Karpov, I.V.; Zakharenkova, I.E. Simulation of seismo-ionospheric effects initiated by internal gravity wave. Russ. J. Phys. Chem. 2011, B5, 393–401. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Hobara, Y.; Rozhnoi, A.; Solovieva, M.; Molchanov, O.A.; Korepanov, K. Atmospheric gravity waves as a possible candidate for seismo-ionospheric perturbations. J. Atmos. Electr. 2011, 31, 129–140. [Google Scholar] [CrossRef]
- Korepanov, V.; Hayakawa, M.; Yampolski, Y.; Lizunov, G. AGW as a seismo-ionospheric coupling responsible agent. Phys. Chem. Earth 2009, 34, 485–495. [Google Scholar] [CrossRef]
- Lizunov, G.; Skorokhod, T.; Hayakawa, M.; Korepanov, V. Formation of ionospheric precursors of earthquakes—Probable mechanism and its substantiation. Open J. Earthq. Res. (OJER) 2020, 9, 142. [Google Scholar] [CrossRef]
- Freund, F.T. Time-resolved study of charge generation and propagation in igneous rock. J. Geophys. Res. 2000, 105, 11001–11019. [Google Scholar] [CrossRef]
- Gorny, V.I.; Salman, A.G.; Troni, A.A.; Shilin, B.B. The Earth’s outgoing IR radiation as an indicator of seismic activity. Proc. USSR Acad. Sci. 1988, 30, 67–69. [Google Scholar]
- Qiang, Z.J.; Xu, X.D.; Dian, C.G. Thermal infrared anomaly precursor of impending earthquakes. Chin. Sci. Bull. 1991, 36, 319–323. [Google Scholar] [CrossRef]
- Tronin, A. Satellite thermal survey-a new tool for the study of seismoactive regions. Int. J. Remote Sens. 1996, 17, 1439–1455. [Google Scholar] [CrossRef]
- Tronin, A.; Hayakawa, M.; Molchanov, O. Thermal IR satellite data application for earthquake research in China and Japan. J. Geodyn. 2002, 33, 519–534. [Google Scholar] [CrossRef]
- Dey, S.; Singh, R.P. Surface latent heat flux as an earthquake precursor. Nat. Hazards Earth Syst. Sci. 2003, 3, 749–755. [Google Scholar] [CrossRef]
- Ouzounov, D.; Freund, F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res. 2004, 33, 268–273. [Google Scholar] [CrossRef]
- Surkov, V.; Pokhotelov, O.; Parrot, M.; Hayakawa, M. On the origin of stable IR anomalies detected by satellites above seismo-active regions. Phys. Chem. Earth Parts A/B/C 2006, 31, 164–171. [Google Scholar] [CrossRef]
- Tramutoli, V.; Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (Izmit) earthquake, August 17, 1999. Remote Sens. Environ. 2005, 96, 409–426. [Google Scholar] [CrossRef]
- Blackett, M.; Wooster, M.J.; Malamud, B.D. Exploring land surface temperature earthquake precursors: A focus on the Gujarat (India) earthquake of 2001. Geophys. Res. Lett. 2011, 38, L15303. [Google Scholar] [CrossRef]
- Shah, M.; Khan, M.; Ullah, H.; Ali, S. Thermal anomalies prior to the 2015 Gorkha (India) earthquake from MODIS land surface temperature and outgoing logwave radiation. Geodyn. Tectonophys. 2018, 9, 123–138. [Google Scholar] [CrossRef]
- Piscini, A.; De Santis, A.; Marchetti, D.; Cianchini, G. A multiparametric climatological approach to study the 2016 Amatrice–Norcia (Central Italy) earthquake preparatory phase. Pure Appl. Geophys. 2017, 174, 3673–3688. [Google Scholar] [CrossRef]
- Draz, M.U.; Shah, M.; Jamjareegulgarn, P.; Shahzed, R.; Hasan, A.M.; Ghamry, N.A. Deep machine learning based possible atmospheric and ionospheric precursors of the 2021 Mw7.1 Japan earthquake. Remote Sens. 2023, 15, 1904. [Google Scholar] [CrossRef]
- Ghosh, S.; Sasmal, S.; Potirakis, S.; Hayakawa, M. Thermal anomaly observed during the Crete earthquake on 27 September, 2021. Geosciences 2023, 14, 73. [Google Scholar] [CrossRef]
- Ghosh, S.; Chowdhury, S.K.; Kundu, S.; Sasmal, S.; Politis, D.Z.; Potirakis, S.M.; Hayakawa, M.; Chakraborty, S.; Chakrabarti, S.K. Unusual surface latent heat flux variations and their critical dynamics revealed before strong earthquakes. Entropy 2022, 24, 23. [Google Scholar] [CrossRef]
- Ouzounov, D.; Liu, D.; Chunli, K.; Cervone, G.; Kafatos, M.; Taylor, P. Outgoing long wave radiation variability from satellite data prior to major earthquakes. Tectonophysics 2007, 431, 211–220. [Google Scholar] [CrossRef]
- Venkatanathan, N.; Natyaganov, V. Outgoing longwave radiations as pre-earthquake signals: Preliminary results of 24 September 2013 M7.7 earthquake. Curr. Sci. 2014, 106, 1291–1297. [Google Scholar]
- Xiong, P.; Shen, X.H.; Bi, X.X.; Kang, C.L.; Chen, J.Z.; Jing, F.; Chen, Y. Study of outgoing longwave radiation anomalies associated with Haiti earthquake. Nat. Hazards Earth Syst. Sci. 2010, 10, 2169–2178. [Google Scholar] [CrossRef]
- Shah, M.; Ehsan, M.; Abbas, A.; Ahmed, A.; Jamjareegulgarn, P. Possible thermal anomalies associated with global terrible earthquakes during 2000-2019 based on MODIS-LST. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1002705. [Google Scholar]
- Zarchi, A.K.; Maharan, M.R.S. Fault distance-based approach in thermal anomaly detection before strong earthquakes. Nat. Hazards Earth Syst. Sci. 2020, 391. [Google Scholar] [CrossRef]
- Genzano, N.; Filizzaola, C.; Hattori, K.; Pergola, N.; Tramutoli, V. Statistical correlation analysis between thermal infrared anomalies observed from MTSATs and large earthquakes occurred in Japan (2005–2015). J. Geophys. Res. Solid Earth 2021, 126, e2020JB020108. [Google Scholar] [CrossRef]
- Sharma, P.; Bardhan, A.; Kumari, R.; Sharma, D.K.; Sharma, A.K. Variation of surface latent heat flux (SLHF) observed during high-magnitude earthquakes. J. Ind. Geophys. Union 2024, 28, 131–142. [Google Scholar]
- Schekotov, A.; Borovleva, K.; Pilipenko, V.; Chebrov, D.; Hayakawa, M. Meteorological response of Kamchatka seismicity. In Problems of Geocosmos-2022; Kosterov, A., Lyskova, E., Mironova, I., Apatenkov, S., Baranov, S., Eds.; Springer Proceedings in Earth and Environmental Sciences; Springer: Cham, Switzerland, 2023; pp. 237–247. [Google Scholar]
- Hayakawa, M.; Molchanov, O.A.; Ondoh, T.; Kawai, E. The precursory signature effect of the Kobe earthquake on VLF subionospheric signals. J. Comm. Res. Lab. 1996, 43, 169–180. [Google Scholar]
- Nagao, T.; Enomoto, Y.; Fujinawa, Y.; Hata, M.; Hayakawa, M.; Huang, Q.; Izutsu, J.; Kushida, Y.; Maeda, K.; Oike, K.; et al. Electromagnetic anomalies associated with 1995 Kobe earthquake. J. Geodyn. 2002, 33, 401–411. [Google Scholar] [CrossRef]
- Virk, H.S.; Singh, B. Radon recording of Uttarkashi earthquake. Geophys. Res. Lett. 1994, 21, 737–741. [Google Scholar] [CrossRef]
- Heincke, J.; Koch, U.; Martinelli, G. CO2 and radon measurements in the Vogtland area (Germany)—A contribution to earthquake prediction research. Geophys. Res. Lett. 1995, 22, 774–779. [Google Scholar]
- Tsunogai, U.; Wakita, H. Anomalous changes in groundwater chemistry—Possible precursors of the 1995 Hyogo-ken Nanbu earthquake. Japan. J. Phys. Earth 1996, 44, 381–390. [Google Scholar] [CrossRef]
- Igarashi, G.; Saeki, S.; Takahata, N.; Sumikawa, K.; Tasaka, S.; Sasaki, Y.; Takahashi, M.; Sano, Y. Ground-water radon anomaly before the Kobe earthquake in Japan. Science 1995, 269, 60–61. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Igarashi, G.; Ishikawa, T.; Tokonami, S.; Shinogi, M. Evidence of precursor phenomena in the Kobe earthquake obtained from atmospheric radon concentration. Appl. Geochem. 2006, 21, 1064–1072. [Google Scholar] [CrossRef]
- Lin, T.; Horne, B.G.; Tino, P.; Giles, C.L. Learning long-term dependencies in NARX recurrent neural networks. IEEE Trans. Neural Netw. 1996, 7, 1329–1338. [Google Scholar]
- Available online: https://jp.mathworks.com/help/deeplearning/ug/design-time-series-narx-feedback-neural-networks.html (accessed on 1 May 2024).
- Billings, S.A. Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains; John Wiley and Sons: West Sussex, UK, 2013; 555p. [Google Scholar]
- Santosa, H.; Hobara, Y. One day prediction of nighttime VLF amplitudes using nonlinear autoregression and neural network modeling. Radio Sci. 2017, 52, 132–145. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Akhoondzadeh, M. Decision Tree, Bagging and Random Forest methods detect TEC seismo-ionospheric anomalies around the time of the Chile (Mw = 8.8) earthquake of 27 February 2010. Adv. Space Res. 2016, 57, 2464–2469. [Google Scholar] [CrossRef]
- Potirakis, S.M.; Kasnesis, P.; Patrikakos, C.Z.; Contoyiannis, Y.; Tatlas, N.A.; Mitilineos, S.A.; Asano, T.; Hayakawa, M. A decision making system using deep learning for earthquake prediction by means of electromagnetic precursors. In Proceedings of the EMSEV (Electromagnetic Studies of Earthquakes and Volcanoes) Meeting, Potenza, Italy, 17–21 September 2018; pp. 217–221. [Google Scholar]
- Kuyuk, H.S.; Ohno, S. Real-time classification of earthquake using deep learning. Procedia Comput. Sci. 2018, 140, 298–305. [Google Scholar] [CrossRef]
- Yan, X.; Shi, Z.; Wang, G.; Zhang, H.; Bi, E. Detection of possible hydrological precursor anomalies using long short-term memory: A case study of the 1996 Lijiang earthquake. J. Hydrol. 2021, 599, 126369. [Google Scholar] [CrossRef]
- Şentürk, E.; Saqib, M.; Adil, M.A. A Multi-network based Hybrid LSTM model for ionospheric anomaly detection: A case study of the Mw 7.8 Nepal earthquake. Adv. Space Res. 2022, 70, 440–455. [Google Scholar] [CrossRef]
- Berhich, A.; Belouadha, F.Z.; Kabbaj, M.I. An attention-based LSTM network for large earthquake prediction. Soil Dyn. Earthq. Eng. 2022, 165, 107663. [Google Scholar] [CrossRef]
- Xiong, P.; Long, C.; Zhou, H.; Zhang, X.; Shen, X. GNSS TEC-based earthquake ionospheric perturbation detection using a novel deep learning framework. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4248–4263. [Google Scholar] [CrossRef]
- Nardi, A.; Pignatelli, A.; Spagnuolo, E. A neural network based approach to classify VLF signals as rock rupture precursors. Sci. Rep. 2022, 12, 13744. [Google Scholar] [CrossRef]
- Scorzini, A.R.; Di Bacco, M.; De Luca, G.; Tallini, M. Deep learning for earthquake hydrology? Insights from the karst Gran Sasso aquifer in central Italy. J. Hydrol. 2023, 617, 129002. [Google Scholar] [CrossRef]
- Muhammad, A.; Külahcı, F.; Birel, S. Investigating radon and TEC anomalies relative to earthquakes via AI models. J. Atmos. Sol.-Terr. Phys. 2023, 245, 106037. [Google Scholar] [CrossRef]
- Massaoudi, M.; Chihi, L.; Sidhom, L.; Trabelsi, M.; Refeat, S.S.; Oueslati, F.S. A novel approach based deep RNN using hybrid NARX-LSTM model for solar power forecasting. arXiv 2019, arXiv:1910.10064. [Google Scholar]
- Cocianu, C.L.; Uscatu, C.R.; Avramescu, M. Improvement of LSTM-based forecasting with NARX model through use of an evolutionary algorithm. Electroncs 2022, 11, 2935. [Google Scholar] [CrossRef]
- Moursi, A.S.A.; El-Fishaway, N.; Djahel, S.; Shouman, M.A. Enhancing PM2.5 prediction using NARX-based combined CNN and LSTM hybrid model. Sensors 2022, 22, 4418. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Ye, M.; Li, J.B.; Wang, Q.; Xu, X. State of charge estimation of lithium-ion batteries using LSTM and NARX neural networks. IEEE Access 2020, 8, 189236–189245. [Google Scholar]
- Bollinger, J. Bollinger on Bollinger Bands; McGraw-Hill: New York, NY, USA, 2001; 227p. [Google Scholar]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the KDD ’19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019. [Google Scholar] [CrossRef]
- Pulinets, S.; Budnikov, P. Atmosphere critical processes sensing with ACP. Atmosphere 2022, 13, 1920. [Google Scholar] [CrossRef]
- Pulinets, S.; Budnikov, P.; Karelin, A.; Zalohar, J. Thermodynamic instability of the atmospheric boundary layer stimulated by tectonic and seismic activity. J. Atmos. Sol.-Terr. Phys. 2023, 246, 106050. [Google Scholar] [CrossRef]
- Shitov, A.V.; Pulinets, S.A.; Budnikov, P.A. Effect of earthquake preparation on changes in meteorological characteristics (Based on the example of the 2023 Chuya earthquake). Geomagn. Aeron. 2023, 63, 395–408. [Google Scholar] [CrossRef]
- Freund, F.T.; Daneshvar, M.R.M.; Ebrahimi, M. Atmospheric storm anomalies prior to major earthquakes in the Japan region. Sustainability 2022, 14, 10241. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Freund, F.T.; Ebrahimi, M. Spatial and temporal analysis of climatic precursors before major earthquakes in Iran (2011–2021). Sustainability 2023, 15, 11023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayakawa, M.; Hirooka, S.; Michimoto, K.; Potirakis, S.M.; Hobara, Y. Meteorological Anomalies During Earthquake Preparation: A Case Study for the 1995 Kobe Earthquake (M = 7.3) Based on Statistical and Machine Learning-Based Analyses. Atmosphere 2025, 16, 88. https://doi.org/10.3390/atmos16010088
Hayakawa M, Hirooka S, Michimoto K, Potirakis SM, Hobara Y. Meteorological Anomalies During Earthquake Preparation: A Case Study for the 1995 Kobe Earthquake (M = 7.3) Based on Statistical and Machine Learning-Based Analyses. Atmosphere. 2025; 16(1):88. https://doi.org/10.3390/atmos16010088
Chicago/Turabian StyleHayakawa, Masashi, Shinji Hirooka, Koichiro Michimoto, Stelios M. Potirakis, and Yasuhide Hobara. 2025. "Meteorological Anomalies During Earthquake Preparation: A Case Study for the 1995 Kobe Earthquake (M = 7.3) Based on Statistical and Machine Learning-Based Analyses" Atmosphere 16, no. 1: 88. https://doi.org/10.3390/atmos16010088
APA StyleHayakawa, M., Hirooka, S., Michimoto, K., Potirakis, S. M., & Hobara, Y. (2025). Meteorological Anomalies During Earthquake Preparation: A Case Study for the 1995 Kobe Earthquake (M = 7.3) Based on Statistical and Machine Learning-Based Analyses. Atmosphere, 16(1), 88. https://doi.org/10.3390/atmos16010088