A Manikin-Based Study of Particle Dispersion in a Vehicle Cabin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure of the Respiratory Manikin
Settings of Respiratory Functions
2.2. Experimental Setup
2.2.1. Case Study: Car Cabin
2.2.2. Instrumentation and Measurement Locations
2.2.3. Particle Source Consistency
2.3. Data Analysis
3. Results
3.1. Influence of the Source Emission: Breathing and Speaking
3.2. Influence of the HVAC Ventilation Mode and Blower Level
4. Discussion
4.1. Influence of the Source Emission: Breathing and Speaking
4.2. Influence of the HVAC Ventilation Mode and Blower Level
4.3. Limitations and Future Research
5. Conclusions
- The introduced manikin-based method could capture variations in particle concentrations at different locations and due to variations in the ventilation mode, blower level, and emission source.
- Identifying the optimal measurement location around the emitter to accurately capture the highest concentrations with a high degree of reliability is a challenge. Key factors such as the airflow pattern (e.g., direction, volume flow rate, uniform/non-uniform spreading) and the direction of the emitter’s head (particle source) play important roles in this process.
- Within a car cabin, the seat directly behind the emitter has the highest concentrations of encountered respiratory particles. The average of all experimental use-cases indicated that the front-left and rear-left seats demonstrate 56% and 49% lower particle concentrations, respectively, compared to the rear-right seat.
- The passenger seat beside the emitter has the lowest particle concentrations. On average, concentrations in this seat are lower than the rear-right seat by 56% and rear-left seat by 14%.
- Increasing the airflow from blower level 3 to 5 in the recirculation mode or from blower level 4 to 6 in the fresh mode reduces particle levels within the cabin, with measurements indicating an average reduction of 38% across all experimental conditions.
- In this study, under comparable air volume flow conditions and similar exhalation activities, the recirculation mode with an efficient particle filter was more effective in reducing particle concentrations compared to the fresh air mode. On average, it achieved a 33% reduction in particle concentrations across all experimental conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Tirachini, A.; Cats, O. COVID-19 and Public Transportation: Current Assessment, Prospects, and Research Needs. J. Public Trans. 2020, 22, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Sarhan, A.A.R.; Naser, P.; Naser, J. Numerical study of when and who will get infected by coronavirus in passenger car. Environ. Sci. Pollut. Res. Int. 2022, 29, 57232–57247. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Lei, Z.; Hai, Z.; Xiao, S.; Rui, J.; Yang, H.; Jing, X.; Wang, H.; Xie, Z.; Luo, P.; et al. Transmission of SARS-CoV-2 in Public Transportation Vehicles: A Case Study in Hunan Province, China. Open Forum Infect. Dis. 2020, 7, ofaa430. [Google Scholar] [CrossRef] [PubMed]
- Bucsky, P. Modal share changes due to COVID-19: The case of Budapest. Transp. Res. Interdiscip. Perspect. 2020, 8, 100141. [Google Scholar] [CrossRef]
- Siegel, J.D.; Rhinehart, E.; Jackson, M.; Chiarello, L. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings. Am. J. Infect. Control 2007, 35, S65–S164. [Google Scholar] [CrossRef]
- Mittal, R.; Ni, R.; Seo, J.-H. The flow physics of COVID-19. J. Fluid Mech. 2020, 894, F2. [Google Scholar] [CrossRef]
- Jones, R.M.; Brosseau, L.M. Aerosol transmission of infectious disease. J. Occup. Environ. Med. 2015, 57, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.Y.H.; Wan, M.P.; Morawska, L.; Johnson, G.R.; Ristovski, Z.D.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Li, Y.; Xie, X.; et al. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci. 2009, 40, 122–133. [Google Scholar] [CrossRef]
- Asadi, S.; Wexler, A.S.; Cappa, C.D.; Barreda, S.; Bouvier, N.M.; Ristenpart, W.D. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 2019, 9, 2348. [Google Scholar] [CrossRef]
- Shinohara, N.; Tatsu, K.; Kagi, N.; Kim, H.; Sakaguchi, J.; Ogura, I.; Murashima, Y.; Sakurai, H.; Naito, W. Air exchange rates and advection-diffusion of CO2 and aerosols in a route bus for evaluation of infection risk. Indoor Air 2022, 32, e13019. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Rewitz, K.; Derwein, D.; Burgholz, T.M.; Schweiker, M.; Bardey, J.; Tappler, P. Estimation of the Risk of Infection by aerosol-Borne Viruses in Ventilated Rooms; White Paper, RWTH-EBC 2021-004; Institute for Energy Efficient Buildings and Indoor Climate (EBC): Aachen, Germany, 2021. [Google Scholar] [CrossRef]
- Papineni, R.S.; Rosenthal, F.S. The size distribution of droplets in the exhaled breath of healthy human subjects. J. Aerosol Med. 1997, 10, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Johnson, G.R.; Ristovski, Z.D.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Chao, C.; Li, Y.; Katoshevski, D. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 2009, 40, 256–269. [Google Scholar] [CrossRef]
- Riediker, M.; Tsai, D.-H. Estimation of Viral Aerosol Emissions From Simulated Individuals With Asymptomatic to Moderate Coronavirus Disease 2019. JAMA Netw. Open 2020, 3, e2013807. [Google Scholar] [CrossRef]
- Edwards, D.A.; Man, J.C.; Brand, P.; Katstra, J.P.; Sommerer, K.; Stone, H.A.; Nardell, E.; Scheuch, G. Inhaling to mitigate exhaled bioaerosols. Proc. Natl. Acad. Sci. USA 2004, 101, 17383–17388. [Google Scholar] [CrossRef] [PubMed]
- Fabian, P.; McDevitt, J.J.; DeHaan, W.H.; Fung, R.O.P.; Cowling, B.J.; Chan, K.H.; Leung, G.M.; Milton, D.K. Influenza virus in human exhaled breath: An observational study. PLoS ONE 2008, 3, e2691. [Google Scholar] [CrossRef] [PubMed]
- Liljeroos, L.; Huiskonen, J.T.; Ora, A.; Susi, P.; Butcher, S.J. Electron cryotomography of measles virus reveals how matrix protein coats the ribonucleocapsid within intact virions. Proc. Natl. Acad. Sci. USA 2011, 108, 18085–18090. [Google Scholar] [CrossRef]
- Rossman, J.S.; Lamb, R.A. Influenza virus assembly and budding. Virology 2011, 411, 229–236. [Google Scholar] [CrossRef]
- Kim, J.M.; Chung, Y.S.; Jo, H.J.; Lee, N.J.; Kim, M.S.; Woo, S.H.; Park, S.; Kim, J.W.; Kim, H.M.; Han, M.G. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong Public Health Res. Perspect. 2020, 11, 3–7. [Google Scholar] [CrossRef]
- Park, W.B.; Kwon, N.J.; Choi, S.J.; Kang, C.K.; Choe, P.G.; Kim, J.Y.; Yun, J.; Lee, G.W.; Seong, M.W.; Kim, N.J.; et al. Virus Isolation from the First Patient with SARS-CoV-2 in Korea. J. Korean Med. Sci. 2020, 35, e84. [Google Scholar] [CrossRef]
- Mathai, V.; Das, A.; Bailey, J.A.; Breuer, K. Airflows Inside Passenger Cars and Implications for Airborne Disease Transmission. 2020. Available online: http://arxiv.org/pdf/2007.03612v2 (accessed on 11 November 2020).
- Arpino, F.; Grossi, G.; Cortellessa, G.; Mikszewski, A.; Morawska, L.; Buonanno, G.; Stabile, L. Risk of SARS-CoV-2 in a car cabin assessed through 3D CFD simulations. Indoor Air 2022, 32, e13012. [Google Scholar] [CrossRef]
- Kumar, P.; Omidvarborna, H.; Tiwari, A.; Morawska, L. The nexus between in-car aerosol concentrations, ventilation and the risk of respiratory infection. Environ. Int. 2021, 157, 106814. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.; Mak, C.M.; Gao, N.; Niu, J. Tracer gas is a suitable surrogate of exhaled droplet nuclei for studying airborne transmission in the built environment. Build. Simul. 2020, 13, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Lednicky, J.A.; Lauzardo, M.; Alam, M.M.; Elbadry, M.A.; Stephenson, C.J.; Gibson, J.C.; Morris, J.G. Isolation of SARS-CoV-2 from the air in a car driven by a COVID patient with mild illness. Int. J. Infect. Dis. 2021, 108, 212–216. [Google Scholar] [CrossRef]
- Kim, S.; Jung, S.; Seyedi, M.; Kim, H.-K. Ventilation efficiency in road vehicles and probability of respiratory infection. Transp. Eng. 2023, 12, 100173. [Google Scholar] [CrossRef]
- de Luca, A.; Sall, F.S.; Sailley, R.; Capellier, G.; Khoury, A. Reliability of manikin-based studies: An evaluation of manikin characteristics and their impact on measurements of ventilatory variables. Anaesthesia 2015, 70, 915–921. [Google Scholar] [CrossRef]
- Pleil, J.D.; Ariel Geer Wallace, M.; Davis, M.D.; Matty, C.M. The physics of human breathing: Flow, timing, volume, and pressure parameters for normal, on-demand, and ventilator respiration. J. Breath Res. 2021, 15, 042002. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.K.; Lin, C.-H.; Chen, Q. Characterizing exhaled airflow from breathing and talking. Indoor Air 2010, 20, 31–39. [Google Scholar] [CrossRef]
- Abkarian, M.; Mendez, S.; Xue, N.; Yang, F.; Stone, H.A. Speech can produce jet-like transport relevant to asymptomatic spreading of virus. Proc. Natl. Acad. Sci. USA 2020, 117, 25237–25245. [Google Scholar] [CrossRef]
- Gregson, F.K.A.; Watson, N.A.; Orton, C.M.; Haddrell, A.E.; McCarthy, L.P.; Finnie, T.J.R.; Gent, N.; Donaldson, G.C.; Shah, P.L.; Calder, J.D.; et al. Comparing aerosol concentrations and particle size distributions generated by singing, speaking and breathing. Aerosol Sci. Technol. 2021, 55, 681–691. [Google Scholar] [CrossRef]
- Bagheri, G.; Schlenczek, O.; Turco, L.; Thiede, B.; Stieger, K.; Kosub, J.M.; Clauberg, S.; Pöhlker, M.L.; Pöhlker, C.; Moláček, J.; et al. Size, concentration, and origin of human exhaled particles and their dependence on human factors with implications on infection transmission. J. Aerosol Sci. 2023, 168, 106102. [Google Scholar] [CrossRef]
- TSI Incorporated. Model 3330 Optical Particle Sizer Spectrometer Operation and Service Manual. Available online: https://www.kenelec.com.au/wp-content/uploads/2016/06/TSI_3330_Opticle_Particle_Sizer_Manual.pdf (accessed on 26 November 2024).
Respiratory Mode | Frequency in Cycles/min | Exhaled Volume in L/min | One Cycle Duration in Seconds | Delay Time Between Inhalation and Exhalation in Seconds |
---|---|---|---|---|
Breathing | 10.0 | 5.0 | 6.0 | 0.5 |
Speaking | 15.0 | 15.0 | 4.0 | 0.5 |
Particle Size in µm | IQRbreathing in pcs./cm3 | IQRspeaking in pcs./cm3 | Relative Difference in IQR (Breathing vs. Speaking) |
---|---|---|---|
0.3 | 75.0 | 254.5 | −71% |
0.374 | 63.4 | 211.6 | −70% |
0.465 | 42.6 | 154.2 | −72% |
0.579 | 17.0 | 60.2 | −72% |
0.721 | 9.1 | 33.3 | −73% |
0.897 | 5.0 | 17.7 | −72% |
1.117 | 1.3 | 4.1 | −68% |
Average | −71% |
Experiment Days | IQR in pcs./cm3 | Relative Difference from the Mean Concentrations |
---|---|---|
Day 1 | 133.1 | −2% |
Day 2 | 134.5 | −1% |
Day 3 | 145.4 | 7% |
Day 4 | 123.8 | −9% |
Day 5 | 137.4 | 1% |
Day 6 | 140.4 | 3% |
Use-Case | Manikin Mode | Ventilation Mode | Blower Level | Blower Intensity |
---|---|---|---|---|
1 | Breathing | Fresh | 4 | Low |
2 | Breathing | Fresh | 6 | High |
3 | Breathing | Recirculation | 3 | Low |
4 | Breathing | Recirculation | 5 | High |
5 | Speaking | Fresh | 4 | Low |
6 | Speaking | Fresh | 6 | High |
7 | Speaking | Recirculation | 3 | Low |
8 | Speaking | Recirculation | 5 | High |
Number of repetitions | 3 | |||
Total number of experiments | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabilou, F.; Derwein, D.; Kirmas, A.; Dhake, A.; Vogt, R.; Eckstein, L.; Rewitz, K.; Müller, D. A Manikin-Based Study of Particle Dispersion in a Vehicle Cabin. Atmosphere 2025, 16, 116. https://doi.org/10.3390/atmos16020116
Nabilou F, Derwein D, Kirmas A, Dhake A, Vogt R, Eckstein L, Rewitz K, Müller D. A Manikin-Based Study of Particle Dispersion in a Vehicle Cabin. Atmosphere. 2025; 16(2):116. https://doi.org/10.3390/atmos16020116
Chicago/Turabian StyleNabilou, Fatemeh, Dennis Derwein, Alexander Kirmas, Abhinav Dhake, Rainer Vogt, Lutz Eckstein, Kai Rewitz, and Dirk Müller. 2025. "A Manikin-Based Study of Particle Dispersion in a Vehicle Cabin" Atmosphere 16, no. 2: 116. https://doi.org/10.3390/atmos16020116
APA StyleNabilou, F., Derwein, D., Kirmas, A., Dhake, A., Vogt, R., Eckstein, L., Rewitz, K., & Müller, D. (2025). A Manikin-Based Study of Particle Dispersion in a Vehicle Cabin. Atmosphere, 16(2), 116. https://doi.org/10.3390/atmos16020116