A Flow-Speed Model for Motorways in England: Analysis Under Various Weather Conditions
Abstract
:1. Introduction
2. Literature Review
2.1. Speed–Flow Model
2.2. Precipitation Impacts on Speed–Flow Model
3. Methodology
3.1. Proposed Speed–Flow Model
3.2. Model Analysis with Varying Important Parameters
3.3. Speed–Flow Relationship Under Different Precipitation
4. Results and Discussion
4.1. Data Collection
4.2. Model Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, S.; Zhang, M.-Y. New speed flow relationships for road network planning in the Paris Region. In Traffic And Transportation Studies (2002); American Society of Civil Engineers: Reston, VA, USA, 2002; pp. 389–396. [Google Scholar]
- Karami, Z.; Kashef, R. Smart transportation planning: Data, models, and algorithms. Transp. Eng. 2020, 2, 100013. [Google Scholar] [CrossRef]
- Khodabandelou, G.; Kheriji, W.; Selem, F.H. Link traffic speed forecasting using convolutional attention-based gated recurrent unit. Appl. Intell. 2021, 51, 2331–2352. [Google Scholar] [CrossRef]
- Taylor, N.; Bourne, N.; Notley, S.; Skrobanski, G. Evidence for speed flow relationships. In Proceedings of the European Transport Conference, Noordwijkerhout, The Netherlands, 6–8 October 2008; Leeuwenhorst: Noordwijkerhout, The Netherlands, 2008; pp. 6–8. [Google Scholar]
- Abou-Rahme, N.F. A Probabilistic Model for the Origin of Motorway Shockwaves. Ph.D. Thesis, University of Southampton, Southampton, UK, 2004. [Google Scholar]
- Cassidy, M.J.; Bertini, R.L. Some traffic features at freeway bottlenecks. Transp. Res. Part B Methodol. 1999, 33, 25–42. [Google Scholar] [CrossRef]
- Dailisan, D.N.; Lim, M.T. Agent-based modeling of lane discipline in heterogeneous traffic. Phys. A Stat. Mech. Its Appl. 2016, 457, 138–147. [Google Scholar] [CrossRef]
- Kesting, A.; Treiber, M.; Schönhof, M.; Kranke, F.; Helbing, D. Jam-avoiding adaptive cruise control (ACC) and its impact on traffic dynamics. In Traffic and Granular Flow; Springer: Berlin/Heidelberg, Germany, 2007; pp. 633–643. [Google Scholar]
- Mohan, R.; Ramadurai, G. Multi-class traffic flow model based on three dimensional flow–concentration surface. Phys. A Stat. Mech. Its Appl. 2021, 577, 126060. [Google Scholar] [CrossRef]
- Xin, W.; Moonam, H.; Ala, M.V. Connected Eco-Driving Technologies for Adaptive Traffic Signal Control; New York State Energy Research and Development Authority: New York, NY, USA, 2019.
- Diakaki, C.; Papageorgiou, M.; Papamichail, I.; Nikolos, I. Overview and analysis of vehicle automation and communication systems from a motorway traffic management perspective. Transp. Res. Part A Policy Pract. 2015, 75, 147–165. [Google Scholar] [CrossRef]
- Vijayaraghavan, V.; Rian Leevinson, J. Intelligent traffic management systems for next generation IoV in smart city scenario. In Connected Vehicles in the Internet of Things; Springer: Berlin/Heidelberg, Germany, 2020; pp. 123–141. [Google Scholar]
- Department of Transport, Road Traffic Statistics. 2024. Available online: https://roadtraffic.dft.gov.uk/manualcountpoints/27923?utm_source=chatgpt.com (accessed on 10 January 2025).
- Hranac, R.; Sterzin, E.; Krechmer, D.; Rakha, H.A.; Farzaneh, M. Empirical Studies on Traffic Flow in Inclement Weather; Federal Highway Administration: Washington, DC, USA, 2006.
- Akin, D.; Sisiopiku, V.P.; Skabardonis, A. Impacts of weather on traffic flow characteristics of urban freeways in Istanbul. Procedia-Soc. Behav. Sci. 2011, 16, 89–99. [Google Scholar] [CrossRef]
- Xu, F.; He, Z.; Sha, Z.; Zhuang, L.; Sun, W. Assessing the impact of rainfall on traffic operation of urban road network. Procedia-Soc. Behav. Sci. 2013, 96, 82–89. [Google Scholar] [CrossRef]
- Salvi, K.A.; Kumar, M.; Hainen, A.M. Sensitivity of Traffic Speed to Rainfall. Weather Clim. Soc. 2022, 14, 1165–1175. [Google Scholar] [CrossRef]
- Nguyen, Y.-L.T.; Nguyen Duc, K.; Le, A.-T.; Nghiem, T.-D.; Than, H.-Y.T. Impact of real-world driving characteristics on the actual fuel consumption of motorcycles and implications for traffic-related air pollution control in Vietnam. Fuel 2022, 345, 128256. [Google Scholar] [CrossRef]
- Yang, S.; Qian, S. Understanding and Predicting Travel Time with Spatio-Temporal Features of Network Traffic Flow, Weather and Incidents. IEEE Intell. Transp. Syst. Mag. 2019, 11, 12–28. [Google Scholar] [CrossRef]
- Greenshields, B.; Bibbins, J.; Channing, W.; Miller, H. A Study of Traffic Capacity, Highway Research Board Proceedings; National Research Council (USA), Highway Research Board: Washington, DC, USA, 1935. [Google Scholar]
- Pipes, L.A. Car Following Models and the Fundamental Diagram of Road Traffic. Transp. Res. 1966, 1, 21–29. [Google Scholar]
- Drew, D.R. Deterministic Aspects of Freeway Operations and Control; Texas Transportation Institute: College Station, TX, USA, 1965. [Google Scholar]
- Jayakrishnan, R.; Tsai, W.K.; Chen, A. A dynamic traffic assignment model with traffic-flow relationships. Transp. Res. Part C Emerg. Technol. 1995, 3, 51–72. [Google Scholar] [CrossRef]
- Underwood, R.T. Speed, volume and density relationships. In Quality and Theory of Traffic Flow; Yale Bureau of Highway Traffic: New Haven, CT, USA, 1961; pp. 141–188. [Google Scholar]
- Newell, G.F. Nonlinear effects in the dynamics of car following. Oper. Res. 1961, 9, 209–229. [Google Scholar] [CrossRef]
- Swidler, J.C. Northeast Power Failure, November 9 and 10, 1965: A Report to the President; Federal Power Commission: Washington, DC, USA, 1965.
- Kerner, B.S.; Konhäuser, P. Structure and parameters of clusters in traffic flow. Phys. Rev. E 1994, 50, 54. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, J.; Chen, Q.-Y.; Ni, D. Logistic modeling of the equilibrium speed–density relationship. Transp. Res. Part A Policy Pract. 2011, 45, 554–566. [Google Scholar] [CrossRef]
- Greenberg, H. An analysis of traffic flow. Oper. Res. 1959, 7, 79–85. [Google Scholar] [CrossRef]
- Van Aerde, M. Single regime speed-flow-density relationship for congested and uncongested highways. In Proceedings of the 74th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 22–28 January 1995. [Google Scholar]
- Edie, L.C. Car-following and steady-state theory for noncongested traffic. Oper. Res. 1961, 9, 66–76. [Google Scholar] [CrossRef]
- Drake, J.; Schofer, J.; May, A. A statistical analysis of speed-density hypotheses; Traffic Flow and Transportation. HRR 1967, 154, 53–87. [Google Scholar]
- Transportation Research Board. Highway Capacity Manual; HCM2010; Transportation Research Board, National Research Council: Washington, DC, USA, 2010; p. 1207. [Google Scholar]
- May, A.D. Traffic Flow Fundamentals; Prentice Hall: Hoboken, NJ, USA, 1990. [Google Scholar]
- Lei, Y.Z.; Gong, Y.; Yang, X.T. Unraveling stochastic fundamental diagrams considering empirical knowledge: Modeling, limitation and further discussion. arXiv 2024, arXiv:2404.09318. [Google Scholar]
- Cheng, Z.; Wang, X.; Chen, X.; Trépanier, M.; Sun, L. Bayesian calibration of traffic flow fundamental diagrams using Gaussian processes. IEEE Open J. Intell. Transp. Syst. 2022, 3, 763–771. [Google Scholar] [CrossRef]
- Chin, S.M.; Franzese, O.; Greene, D.L.; Hwang, H.L.; Gibson, R. Temporary Losses of Highway Capacity and Impacts on Performance: Phase 2; United States Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2004.
- Rakha, H.; Farzaneh, M.; Arafeh, M.; Sterzin, E. Inclement weather impacts on freeway traffic stream behavior. Transp. Res. Rec. 2008, 2071, 8–18. [Google Scholar] [CrossRef]
- Heshami, S.; Kattan, L.; Gong, Z.; Aalami, S. Deterministic and stochastic freeway capacity analysis based on weather conditions. J. Transp. Eng. Part A Syst. 2019, 145, 04019016. [Google Scholar] [CrossRef]
- Datla, S.; Sharma, S. Impact of cold and snow on temporal and spatial variations of highway traffic volumes. J. Transp. Geogr. 2008, 16, 358–372. [Google Scholar] [CrossRef]
- Agarwal, M.; Maze, T.H.; Souleyrette, R. Impacts of weather on urban freeway traffic flow characteristics and facility capacity. In Proceedings of the 2005 Mid-Continent Transportation Research Symposium, Ames, IA, USA, 18–19 August 2005. [Google Scholar]
- Chung, Y. Assessment of non-recurrent congestion caused by precipitation using archived weather and traffic flow data. Transp. Policy 2012, 19, 167–173. [Google Scholar] [CrossRef]
- Maze, T.H.; Agarwal, M.; Burchett, G. Whether weather matters to traffic demand, traffic safety, and traffic operations and flow. Transp. Res. Rec. 2006, 1948, 170–176. [Google Scholar] [CrossRef]
- Jensen, T.C. Weather and road capacity. Danish Journal of Transportation Research-Dansk Tidskrift for Transportforskning; Aalborg University: Aalborg, Denmark, 2014. [Google Scholar]
- Zhang, X.; Chen, M. Quantifying the impact of weather events on travel time and reliability. J. Adv. Transp. 2019, 2019, 8203081. [Google Scholar] [CrossRef]
- Brilon, W.; Lohoff, J. Speed-flow Models for Freeways. Procedia Soc. Behav. Sci. 2011, 16, 26–36. [Google Scholar] [CrossRef]
- Jin, S.; Wang, D.-h.; Xu, C.; Ma, D.-F. Short-term traffic safety forecasting using Gaussian mixture model and Kalman filter. J. Zhejiang Univ. Sci. A 2013, 14, 231–243. [Google Scholar] [CrossRef]
- Kuang, Y.; Qu, X.; Wang, S. A tree-structured crash surrogate measure for freeways. Accid. Anal. Prev. 2015, 77, 137–148. [Google Scholar] [CrossRef]
- Wang, D.; Ma, X.; Ma, D.; Jin, S. A Novel Speed–Density Relationship Model Based on the Energy Conservation Concept. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1179–1189. [Google Scholar] [CrossRef]
- Weng, J.; Meng, Q. Modeling speed-flow relationship and merging behavior in work zone merging areas. Transp. Res. Part C: Emerg. Technol. 2011, 19, 985–996. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Wu, S.; Yin, C.; Jiang, R.; Michalaki, V.; Rowley, G. Enhancement of traffic management algorithms for UK motorways. Transp. Res. Procedia 2023, 72, 1568–1575. [Google Scholar] [CrossRef]
Single-Regime Models | Categories | Function |
---|---|---|
[20] | Generalised polynomials | |
[22] | Generalised polynomials | |
[21] | Generalised polynomials | , |
[30] | Generalised polynomials | |
[23] | Generalised polynomials | |
[24] | Generalised exponent | |
[27] | Generalised exponent | |
[26] | Generalised exponent | |
[27] | Generalised exponent | |
[28] | Generalised exponent | |
[29] | Generalised logarithm |
Reference | Rain | Snow | |||||||
---|---|---|---|---|---|---|---|---|---|
Area | Light Rain | Heavy Rain | Light Snow | Heavy Snow | |||||
Speed | Capacity | Speed | Capacity | Speed | Capacity | Speed | Capacity | ||
[40] | Alberta, Canada | 2–14% | ~15% | 5–17% | ~15% | 3–10% | 5–10% | 20–35% | 25–30% |
[41] | Minneapolis, USA | / | / | 4–7% | 10–17% | / | / | 11–15% | 19–27% |
[42] | South Korea | 5% | 4–7% | 8% | ~14% | / | / | / | / |
[43] | Ames, USA | 2–4% | 2–7% | 6% | 14% | 4–8% | 4–10% | 13% | 22% |
[14] | Seattle, USA | 2–4% | 10–11% | / | / | 5–16% | 12–20% | / | / |
[44] | Belgium | / | / | 5–8% | 5–8% | / | / | / | / |
[45] | Louisville, USA | 3% | 7% | 7% | 17% | / | / | / | / |
Data Sites | Greenshields | Northwestern | Van Aerde | Underwood | The Proposed Model |
---|---|---|---|---|---|
R2 | R2 | R2 | R2 | R2 | |
M25/4055A | 0.21 | 0.34 | 0.27 | 0.78 | 0.91 |
M25/4076A | 0.39 | 0.44 | 0.21 | 0.83 | 0.85 |
M25/4097A | 0.21 | 0.24 | 0.11 | 0.79 | 0.86 |
M25/4120A | 0.17 | 0.17 | 0.26 | 0.79 | 0.89 |
M25/4139A | 0.07 | 0.07 | 0.27 | 0.85 | 0.92 |
M25/4164A | 0.23 | 0.23 | 0.11 | 0.77 | 0.84 |
M25/4193A | 0.02 | 0.02 | 0.26 | 0.77 | 0.93 |
M25/4229A | 0.07 | 0.07 | 0.06 | 0.85 | 0.92 |
M25/4259A | 0.15 | 0.07 | 0.10 | 0.73 | 0.83 |
M25/4277A | 0.07 | 0.07 | 0.10 | 0.78 | 0.85 |
M25/4296A | 0.02 | 0.02 | 0.11 | 0.79 | 0.87 |
M25/4315A | 0.07 | 0.07 | 0.21 | 0.78 | 0.90 |
M25/4332A | 0.07 | 0.07 | 0.11 | 0.69 | 0.87 |
M25/4332A | 0.04 | 0.04 | 0.27 | 0.81 | 0.92 |
M25/4358A | 0.03 | 0.03 | 0.06 | 0.87 | 0.86 |
M25/4390A | 0.11 | 0.11 | 0.07 | 0.75 | 0.91 |
M25/4409A | 0.22 | 0.22 | 0.23 | 0.85 | 0.91 |
M25/4423A | 0.06 | 0.06 | 0.02 | 0.75 | 0.85 |
M25/4442A | 0.08 | 0.13 | 0.07 | 0.68 | 0.86 |
M25/4465A | 0.14 | 0.16 | 0.24 | 0.69 | 0.86 |
Data Sites | Greenshields | Northwestern | Van Aerde | Underwood | The Proposed Model | |||||
---|---|---|---|---|---|---|---|---|---|---|
E | RMSE | E | RMSE | E | RMSE | E | RMSE | E | RMSE | |
M25/4055A | 0.51 | 338.63 | 0.28 | 309.93 | 0.33 | 246.54 | 0.21 | 6.54 | 0.15 | 4.70 |
M25/4076A | 0.40 | 305.73 | 0.52 | 292.88 | 0.46 | 198.65 | 0.12 | 8.62 | 0.12 | 4.93 |
M25/4097A | 0.53 | 397.12 | 0.37 | 391.80 | 0.32 | 263.45 | 0.14 | 7.65 | 0.12 | 5.42 |
M25/4120A | 0.59 | 328.13 | 0.43 | 326.56 | 0.44 | 475.32 | 0.14 | 8.45 | 0.13 | 5.79 |
M25/4139A | 0.46 | 297.85 | 0.30 | 297.86 | 0.31 | 168.25 | 0.17 | 10.35 | 0.16 | 6.20 |
M25/4164A | 0.41 | 352.93 | 0.41 | 352.63 | 0.35 | 195.46 | 0.19 | 7.65 | 0.12 | 4.57 |
M25/4193A | 0.43 | 302.99 | 0.31 | 302.99 | 0.32 | 203.65 | 0.19 | 8.65 | 0.11 | 4.98 |
M25/4229A | 0.50 | 335.17 | 0.43 | 335.18 | 0.45 | 218.45 | 0.18 | 9.25 | 0.12 | 5.13 |
M25/4259A | 0.48 | 208.11 | 0.47 | 207.95 | 0.49 | 205.36 | 0.21 | 7.54 | 0.15 | 5.78 |
M25/4277A | 0.50 | 429.89 | 0.38 | 429.90 | 0.32 | 214.78 | 0.17 | 9.65 | 0.13 | 6.87 |
M25/4296A | 0.54 | 419.00 | 0.35 | 419.01 | 0.32 | 221.54 | 0.19 | 8.25 | 0.17 | 7.23 |
M25/4315A | 0.54 | 420.01 | 0.38 | 420.01 | 0.35 | 204.65 | 0.17 | 11.35 | 0.14 | 7.81 |
M25/4332A | 0.35 | 390.13 | 0.32 | 390.13 | 0.36 | 204.35 | 0.16 | 12.45 | 0.15 | 6.68 |
M25/4358A | 0.36 | 414.35 | 0.34 | 414.35 | 0.38 | 206.15 | 0.22 | 9.35 | 0.16 | 7.48 |
M25/4390A | 0.42 | 432.36 | 0.38 | 432.37 | 0.38 | 145.67 | 0.21 | 10.45 | 0.15 | 7.71 |
M25/4409A | 0.37 | 325.07 | 0.34 | 325.08 | 0.47 | 175.32 | 0.27 | 12.21 | 0.18 | 7.08 |
M25/4423A | 0.44 | 338.54 | 0.39 | 338.54 | 0.42 | 142.56 | 0.25 | 9.78 | 0.17 | 6.03 |
M25/4442A | 0.48 | 360.01 | 0.45 | 360.01 | 0.46 | 184.35 | 0.26 | 12.02 | 0.11 | 6.49 |
M25/4465A | 0.46 | 338.63 | 0.42 | 338.63 | 0.42 | 201.32 | 0.30 | 11.38 | 0.17 | 7.93 |
M25/4479A | 0.52 | 460.39 | 0.48 | 456.13 | 0.44 | 223.65 | 0.26 | 9.67 | 0.11 | 5.36 |
Data Sites | Greenshields | Van Aerde | Underwood | The Proposed Model | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | R2 | R2 | R2 | |||||||||||||
L1 | L2 | L3 | L4 | L1 | L2 | L3 | L4 | L1 | L2 | L3 | L4 | L1 | L2 | L3 | L4 | |
M25/4055A | 0.31 | 0.33 | 0.39 | 0.34 | 0.35 | 0.51 | 0.40 | 0.34 | 0.71 | 0.73 | 0.66 | 0.65 | 0.83 | 0.88 | 0.85 | 0.86 |
M25/4076A | 0.61 | 0.49 | 0.52 | 0.36 | 0.67 | 0.56 | 0.52 | 0.54 | 0.64 | 0.51 | 0.49 | 0.48 | 0.92 | 0.84 | 0.86 | 0.80 |
M25/4097A | 0.35 | 0.44 | 0.53 | 0.40 | 0.35 | 0.50 | 0.61 | 0.40 | 0.81 | 0.81 | 0.73 | 0.78 | 0.88 | 0.83 | 0.85 | 0.83 |
M25/4120A | 0.41 | 0.48 | 0.42 | 0.42 | 0.42 | 0.57 | 0.44 | 0.45 | 0.72 | 0.76 | 0.66 | 0.73 | 0.84 | 0.83 | 0.85 | 0.82 |
M25/4139A | 0.36 | 0.41 | 0.48 | 0.53 | 0.36 | 0.48 | 0.48 | 0.53 | 0.68 | 0.63 | 0.59 | 0.55 | 0.88 | 0.86 | 0.83 | 0.83 |
M25/4164A | 0.49 | 0.54 | 0.54 | 0.45 | 0.49 | 0.60 | 0.54 | 0.42 | 0.84 | 0.87 | 0.69 | 0.68 | 0.96 | 0.89 | 0.91 | 0.89 |
M25/4193A | 0.17 | 0.36 | 0.43 | 0.35 | 0.17 | 0.41 | 0.43 | 0.45 | 0.67 | 0.75 | 0.51 | 0.50 | 0.82 | 0.81 | 0.83 | 0.82 |
M25/4229A | 0.25 | 0.45 | 0.39 | 0.54 | 0.26 | 0.50 | 0.39 | 0.39 | 0.78 | 0.80 | 0.69 | 0.69 | 0.90 | 0.86 | 0.85 | 0.80 |
M25/4259A | 0.26 | 0.36 | 0.42 | 0.65 | 0.26 | 0.50 | 0.39 | 0.42 | 0.76 | 0.63 | 0.64 | 0.58 | 0.91 | 0.90 | 0.88 | 0.81 |
M25/4277A | 0.20 | 0.30 | 0.33 | 0.32 | 0.22 | 0.37 | 0.41 | 0.41 | 0.64 | 0.72 | 0.46 | 0.51 | 0.82 | 0.83 | 0.89 | 0.87 |
M25/4296A | 0.22 | 0.29 | 0.31 | 0.39 | 0.22 | 0.34 | 0.36 | 0.39 | 0.86 | 0.89 | 0.77 | 0.72 | 0.91 | 0.93 | 0.90 | 0.86 |
M25/4315A | 0.20 | 0.31 | 0.31 | 0.37 | 0.20 | 0.35 | 0.41 | 0.38 | 0.81 | 0.76 | 0.68 | 0.68 | 0.91 | 0.89 | 0.90 | 0.88 |
M25/4332A | 0.29 | 0.34 | 0.34 | 0.44 | 0.31 | 0.38 | 0.38 | 0.44 | 0.74 | 0.77 | 0.59 | 0.56 | 0.86 | 0.88 | 0.90 | 0.79 |
M25/4358A | 0.26 | 0.29 | 0.35 | 0.47 | 0.26 | 0.34 | 0.42 | 0.47 | 0.73 | 0.73 | 0.59 | 0.60 | 0.80 | 0.83 | 0.85 | 0.83 |
M25/4390A | 0.20 | 0.18 | 0.27 | 0.46 | 0.20 | 0.19 | 0.30 | 0.46 | 0.75 | 0.70 | 0.66 | 0.62 | 0.87 | 0.83 | 0.80 | 0.86 |
M25/4409A | 0.30 | 0.30 | 0.48 | 0.36 | 0.30 | 0.32 | 0.48 | 0.45 | 0.68 | 0.63 | 0.63 | 0.70 | 0.80 | 0.82 | 0.83 | 0.83 |
M25/4423A | 0.62 | 0.33 | 0.04 | 0.38 | 0.62 | 0.37 | 0.04 | 0.37 | 0.82 | 0.80 | 0.66 | 0.63 | 0.91 | 0.87 | 0.89 | 0.82 |
M25/4442A | 0.22 | 0.31 | 0.40 | 0.42 | 0.24 | 0.39 | 0.40 | 0.41 | 0.79 | 0.78 | 0.75 | 0.80 | 0.87 | 0.81 | 0.80 | 0.80 |
M25/4465A | 0.20 | 0.24 | 0.30 | 0.38 | 0.20 | 0.28 | 0.30 | 0.46 | 0.84 | 0.75 | 0.79 | 0.78 | 0.88 | 0.82 | 0.82 | 0.81 |
M25/4479A | 0.24 | 0.39 | 0.34 | 0.32 | 0.24 | 0.27 | 0.34 | 0.31 | 0.66 | 0.66 | 0.60 | 0.76 | 0.80 | 0.85 | 0.91 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chen, H.; Yin, C.; Michalaki, V.; Proctor, P.; Rowley, G.; Wang, X.; Wei, H. A Flow-Speed Model for Motorways in England: Analysis Under Various Weather Conditions. Atmosphere 2025, 16, 117. https://doi.org/10.3390/atmos16020117
Liu Y, Chen H, Yin C, Michalaki V, Proctor P, Rowley G, Wang X, Wei H. A Flow-Speed Model for Motorways in England: Analysis Under Various Weather Conditions. Atmosphere. 2025; 16(2):117. https://doi.org/10.3390/atmos16020117
Chicago/Turabian StyleLiu, Ye, Haibo Chen, Chuhan Yin, Vivi Michalaki, Phillip Proctor, Gavin Rowley, Xiaowei Wang, and Hongyuan Wei. 2025. "A Flow-Speed Model for Motorways in England: Analysis Under Various Weather Conditions" Atmosphere 16, no. 2: 117. https://doi.org/10.3390/atmos16020117
APA StyleLiu, Y., Chen, H., Yin, C., Michalaki, V., Proctor, P., Rowley, G., Wang, X., & Wei, H. (2025). A Flow-Speed Model for Motorways in England: Analysis Under Various Weather Conditions. Atmosphere, 16(2), 117. https://doi.org/10.3390/atmos16020117