Applying Deep Learning for Wildfire Identification: Economical and Accessible Solutions Leveraging Small Datasets
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- Good AQI: Represented by a TSI image captured on 22 September 2020, at 22 UTC, with a PM2.5 concentration of 5.7 g/m3.
- Moderate AQI: Represented by a TSI image captured on 10 September 2020, at 15 UTC, with a PM2.5 concentration of 19.3 g/m3.
- Unhealthy AQI: Represented by a TSI image captured on 17 September 2020, at 15 UTC, with a PM2.5 concentration of 111.0 g/m3.
- Very Unhealthy AQI: Represented by a TSI image captured on 13 September 2020, at 16 UTC, with a PM2.5 concentration of 191.9 g/m3.
3.1. Training the Model
3.1.1. Discussing Model Performance
3.1.2. Testing the Model
3.2. Health Impacts of Smoke
Reactive Oxygen Species Associated with PM2.5 in Wildfire Smoke
4. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, T.; Mueller, S. Climate influences on future fire severity: A synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States. Fire Ecol. 2023, 19, 43. [Google Scholar] [CrossRef]
- Donovan, V.M.; Crandall, R.; Fill, J.; Wonkka, C.L. Increasing large wildfire in the eastern United States. Geophys. Res. Lett. 2023, 50, e2023GL107051. [Google Scholar] [CrossRef]
- Urbanski, S.P.; Hao, W.M.; Baker, S. Chemical composition of wildland fire emissions. Dev. Environ. Sci. 2008, 8, 79–107. [Google Scholar]
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef]
- Andreae, M.O. Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmos. Chem. Phys. 2019, 19, 8523–8546. [Google Scholar] [CrossRef]
- Schneider, S.R.; Shi, B.; Abbatt, J.P.D. The measured impact of wildfires on ozone in Western Canada from 2001 to 2019. J. Geophys. Res. Atmos. 2024, 129, e2023JD038866. [Google Scholar] [CrossRef]
- Ward, D.S.; Mahowald, N.M.; Kloster, S. The changing radiative forcing of fires: Global model estimates for past, present, and future. Atmos. Chem. Phys. 2012, 12, 10857–10886. [Google Scholar] [CrossRef]
- Shrivastava, M.; Fan, J.; Zhang, Y.; Rasool, Q.Z.; Zhao, B.; Shen, J.; Pierce, J.R.; Jathar, S.H.; Akherati, A.; Zhang, J.; et al. Intense formation of secondary ultrafine particles from Amazonian vegetation fires and their invigoration of deep clouds and precipitation. One Earth 2024, 7, 1029–1043. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. EPA AirData—Download Data Files. Available online: https://aqs.epa.gov/aqsweb/airdata/download_files.html (accessed on 22 December 2024).
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Miller, M.R. Oxidative stress and the cardiovascular effects of air pollution. Free Radic. Biol. Med. 2020, 151, 69–87. [Google Scholar] [CrossRef]
- Jayaratne, R.; Liu, X.; Ahn, K.H.; Asumadu-Sakyi, A.; Fisher, G.; Gao, J.; Mabon, A.; Mazaheri, M.; Mullins, B.; Nyaku, M.; et al. Low-cost PM2.5 sensors: An assessment of their suitability for various applications. Aerosol Air Qual. Res. 2020, 20, 520–532. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.; Subramanian, S.G.; Crowley, M.; Taylor, S.W.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Sousa, M.J.; Moutinho, A.; Almeida, M.; Moreira, A. Wildfire detection using transfer learning on augmented datasets. Expert Syst. Appl. 2020, 142, 112975. [Google Scholar] [CrossRef]
- Sathishkumar, V.E.; Cho, J.; Subramanian, M.; Naren, O.S. Forest fire and smoke detection using deep learning-based learning without forgetting. Fire Ecol. 2023, 19, 9. [Google Scholar] [CrossRef]
- Washington State Department of Ecology. Enviwa Air Quality Monitoring Map. 2024. Available online: https://enviwa.ecology.wa.gov/home/map (accessed on 22 December 2024).
- Atmospheric Radiation Measurement (ARM) User Facility. TSI (Total Sky Imager). 2024. Available online: https://arm.gov/capabilities/instruments/tsi (accessed on 22 December 2024).
- Washington State Department of Ecology. Met One BAM 1020 Operating Procedure. 2017. Available online: https://apps.ecology.wa.gov/publications/documents/1702005.pdf (accessed on 24 December 2024).
- Morris, V.R. Total Sky Imager (TSI) Handbook; Technical Report DOE/SC-ARM/TR-017; U.S. Department of Energy: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
- Qin, D.; Leichner, C.; Delakis, M.; Fornoni, M.; Luo, S.; Yang, F.; Wang, W.; Banbury, C.; Ye, C.; Akin, B.; et al. MobileNetV4—Universal Models for the Mobile Ecosystem. arXiv, 2024; arXiv:2404.10518. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; See Chapter 6 for Activation Functions and Softmax in Neural Networks; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Shrivastava, A. Aarav_train.ipynb. 2024. Available online: https://github.com/amshriva810/SkyImages/blob/main/Savebest_Aarav_train.ipynb (accessed on 28 December 2024).
- Google Colaboratory (Colab). 2024. Available online: https://colab.research.google.com (accessed on 22 December 2024).
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Chollet, F. Keras. 2015. Available online: https://github.com/keras-team/keras (accessed on 28 December 2024).
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
- Google Colab Notebook. Available online: https://colab.research.google.com/drive/1O6b4TP8IecEgSQo36z52lhOw6swMZ3hj#scrollTo=xEhngj4LOhtn (accessed on 1 January 2025).
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Provost, F.; Fawcett, T. Robust classification for imprecise environments. Mach. Learn. 2001, 42, 203–231. [Google Scholar] [CrossRef]
- Fang, T.; Verma, V.; Bates, J.T.; Abrams, J.; Klein, M.; Strickland, M.J.; Sarnat, S.E.; Chang, H.H.; Mulholland, J.A.; Tolbert, P.E.; et al. Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: Contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmos. Chem. Phys. 2016, 16, 3865–3879. [Google Scholar] [CrossRef]
- Fang, T.; Hwang, B.C.H.; Kapur, S.; Hopstock, K.S.; Wei, J.; Nguyen, V.; Nizkorodov, S.A.; Shiraiwa, M. Wildfire particulate matter as a source of environmentally persistent free radicals and reactive oxygen species. Environ. Sci. Atmos. 2023, 3, 34–46. [Google Scholar] [CrossRef]
- Janssen, N.A.; Yang, A.; Strak, M.; Steenhof, M.; Hellack, B.; Gerlofs-Nijland, M.E.; Kuhlbusch, T.; Kelly, F.; Harrison, R.; Brunekreef, B.; et al. Oxidative potential of particulate matter collected at sites with different source characteristics. Sci. Total Environ. 2014, 472, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Susanne, G. Richland WA Sky Images. 2024. Available online: https://zenodo.org/records/14545814 (accessed on 22 December 2024).
Class | Precision | Recall | F1-Score | Number of Images |
---|---|---|---|---|
Class 1 (Good) | 0.50 | 0.40 | 0.44 | 10 |
Class 2 (Moderate) | 0.62 | 0.50 | 0.56 | 10 |
Class 3 (Unhealthy) | 0.67 | 1.00 | 0.80 | 10 |
Class 4 (Very Unhealthy) | 0.78 | 0.70 | 0.74 | 10 |
Weighted Avg | 0.64 | 0.65 | 0.63 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrivastava, A.M.; Shrivastava, M. Applying Deep Learning for Wildfire Identification: Economical and Accessible Solutions Leveraging Small Datasets. Atmosphere 2025, 16, 131. https://doi.org/10.3390/atmos16020131
Shrivastava AM, Shrivastava M. Applying Deep Learning for Wildfire Identification: Economical and Accessible Solutions Leveraging Small Datasets. Atmosphere. 2025; 16(2):131. https://doi.org/10.3390/atmos16020131
Chicago/Turabian StyleShrivastava, Aarav M., and Manish Shrivastava. 2025. "Applying Deep Learning for Wildfire Identification: Economical and Accessible Solutions Leveraging Small Datasets" Atmosphere 16, no. 2: 131. https://doi.org/10.3390/atmos16020131
APA StyleShrivastava, A. M., & Shrivastava, M. (2025). Applying Deep Learning for Wildfire Identification: Economical and Accessible Solutions Leveraging Small Datasets. Atmosphere, 16(2), 131. https://doi.org/10.3390/atmos16020131