Classification of Hydrometeors During a Stratiform Precipitation Event in the Rainy Season of Liupanshan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Note
2.2. MRR Hydrometeor Classification Method
2.3. Validation of Hydrometeor Classification Results
3. Results
3.1. Weather Background
3.2. Classification of Hydrometeor Phase
- ① and ;
- ② and ;
- ③ and .
3.3. Differences in Hydrometeor Phase at Various Precipitation Stages
4. Discussion
5. Conclusions
- The distribution periods of drizzle and raindrops classified using the RaProM method reveal discrepancies between the observed raindrop spectra and rainfall intensity from the DSG5 ground-based precipitation gauge. Assimilating the classified hydrometeors into millimeter-wave cloud radar data for the same height and time intervals, significant differences are found in the radar reflectivity, velocity, and velocity spectrum width thresholds corresponding to drizzle and raindrops compared to the existing observations.
- After adjusting the skewness parameter and differential albedo factor parameter in the RaProM method, sensitivity experiments were conducted to select the parameter thresholds that are more consistent with the ground-based precipitation phenomenometer observations and reclassify the hydrometeors of this precipitation process; the corresponding threshold ranges of cloud radar albedo factors, velocities, and velocity spectral widths of the classified hydrometeor are in good agreement with the existing observations.
- During the three phases of this precipitation process—weak, strong, and weak—there were obvious evolutionary characteristics of various hydrometeors. The hydrometeor phase above the zero-degree layer mainly existed in the form of snow; in the weak precipitation stage, the hydrometeor phase below the zero-degree layer mainly existed in the form of furry rain; and in the strong precipitation stage, it existed in the form of raindrops. During the weak precipitation phase, the percentage of cloud droplet-scale particles at the bottom site was higher than that at the top site. During the strong precipitation stage, the percentage of raindrops at the bottom site was higher than that at the top site. The percentage of raindrops after the strong precipitation period was higher at the summit site than at the bottom site. Topography plays an important role in the evolution of raindrops.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- McFarquhar, G.M.; Um, J.; Jackson, R. Small Cloud Particle Shapes in Mixed-Phase Clouds. J. Appl. Meteorol. Clim. 2013, 52, 1277–1293. [Google Scholar] [CrossRef]
- Kiliani, J.; Baumgarten, G.; Lübken, F.J.; Berger, U. Impact of particle shape on the morphology of noctilucent clouds. Atmos. Chem. Phys. 2015, 15, 12897–12907. [Google Scholar] [CrossRef]
- Morrison, H.; van Lier-Walqui, M.; Fridlind, A.M.; Grabowski, W.W.; Harrington, J.Y.; Hoose, C.; Korolev, A.; Kumjian, M.R.; Milbrandt, J.A.; Pawlowska, H.; et al. Confronting the Challenge of Modeling Cloud and Precipitation Microphysics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001689. [Google Scholar] [CrossRef] [PubMed]
- Guifu, Z.; Sun, J.; Brandes, E.A. Improving Parameterization of Rain Microphysics with Disdrometer and Radar Observations. J. Atmos. Sci. 2006, 63, 1273–1290. [Google Scholar]
- Ashfaq, M.; Ghosh, S.; Kao, S.C.; Bowling, L.C.; Mote, P.; Touma, D.; Rauscher, S.A.; Diffenbaugh, N.S. Near—Term acceleration of hydroclimatic change in the western U.S. J. Geophys. Res. Atmos. 2013, 118, 10676–10693. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Q.; Zhao, C.; Li, Z.; Wu, X.; Chen, J.; Yu, F.; Sun, J.; Shen, X. Impacts of Transition Approach of Water Vapor-Related Microphysical Processes on Quantitative Precipitation Forecasting. Atmosphere 2022, 13, 1133. [Google Scholar] [CrossRef]
- Baker, M.B. Cloud Microphysics and Climate. Science 1997, 276, 1072–1078. [Google Scholar] [CrossRef]
- Ceppi, P.; Brient, F.; Zelinka, M.D.; Hartmann, D.L. Cloud feedback mechanisms and their representation in global climate models. WIREs Clim. Chang. 2017, 8, e465. [Google Scholar] [CrossRef]
- Lin, L.; Liu, X.; Fu, Q.; Shan, Y. Climate Impacts of Convective Cloud Microphysics in NCAR CAM5. J. Clim. 2023, 36, 3183–3202. [Google Scholar] [CrossRef]
- Shupe, M.D. A Ground—Based multisensor cloud phase classifier. Geophys. Res. Lett. 2007, 34, L22809. [Google Scholar] [CrossRef]
- Luke, E.P.; Kollias, P.; Shupe, M.D. Detection of supercooled liquid in mixed—Phase clouds using radar Doppler spectra. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Luke, E.P.; Kollias, P. Separating Cloud and Drizzle Radar Moments During Precipitation Onset Using Doppler Spectra. J. Atmos. Ocean. Tech. 2013, 30, 1656–1671. [Google Scholar] [CrossRef]
- Acquistapace, C.; Kneifel, S.; Löhnert, U.; Kollias, P.; Maahn, M.; Bauer-Pfundstein, M. Optimizing observations of drizzle onset with millimeter-wavelength radars. Atmos. Meas. Tech. 2017, 10, 1783–1802. [Google Scholar] [CrossRef]
- Shiobara, M.; Starkweather, S.M.; Campbell, J.R.; Uttal, T.; Eloranta, E.; Walden, V.P.; Shupe, M.D. Clouds at Arctic Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties. J. Appl. Meteorol. 2011, 50, 626–644. [Google Scholar] [CrossRef]
- Kollias, P.; Rémillard, J.; Luke, E.; Szyrmer, W. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications. J. Geophys. Res. 2011, 116, D13201. [Google Scholar] [CrossRef]
- Kollias, P.; Szyrmer, W.; Rémillard, J.; Luke, E. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution. J. Geophys. Res. 2011, 116, D13203. [Google Scholar] [CrossRef]
- Acquistapace, C.; Löhnert, U.; Maahn, M.; Kollias, P. A New Criterion to Improve Operational Drizzle Detection with Ground-Based Remote Sensing. J. Atmos. Ocean. Tech. 2019, 36, 781–801. [Google Scholar] [CrossRef]
- Kollias, P.; Clothiaux, E.E.; Miller, M.A.; Albrecht, B.A.; Stephens, G.L.; Ackerman, T.P. Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. J. Bull. Am. Meteorol. Soc. 2007, 88, 1608–1624. [Google Scholar] [CrossRef]
- Battaglia, A.; Kollias, P.; Dhillon, R.; Roy, R.; Tanelli, S.; Lamer, K.; Grecu, M.; Lebsock, M.; Watters, D.; Mroz, K.; et al. Spaceborne Cloud and Precipitation Radars: Status, Challenges, and Ways Forward. Rev. Geophys. 2020, 58. [Google Scholar] [CrossRef] [PubMed]
- Al-Sakka, H.; Boumahmoud, A.-A.; Fradon, B.; Frasier, S.J.; Tabary, P. A New Fuzzy Logic Hydrometeor Classification Scheme Applied to the French X-, C-, and S-Band Polarimetric Radars. J. Appl. Meteorol. Clim. 2013, 52, 2328–2344. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, D.; Wang, W.; Wang, J. Microphysical Characteristics of Stratiform Precipitation with Embedded ConVection Based on Multisource Data. Chin. J. Atmos. Sci. 2022, 46, 886–902. (In Chinese) [Google Scholar] [CrossRef]
- Maahn, M.; Kollias, P. Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech. 2012, 5, 2661–2673. [Google Scholar] [CrossRef]
- Löhnert, U.; Schween, J.; Acquistapace, C.; Ebell, K. JOYCE Jülich Observatory for Cloud Evolution. Joyce Jülich Obs. Cloud Evol. 2015, 96, 1157–1174. [Google Scholar] [CrossRef]
- Peters, G.; Fischer, B. Profiles of Raindrop Size Distributions as Retrieved by Microrain Radars. J. Appl. Meteorol. Clim. 2005, 44, 1930–1949. [Google Scholar] [CrossRef]
- Garcia-Benadi, A.; Bech, J.; Gonzalez, S.; Udina, M.; Codina, B.; Georgis, J.-F. Precipitation Type Classification of Micro Rain Radar Data Using an Improved Doppler Spectral Processing Methodology. Remote Sens. 2020, 12, 4113. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Gong, D.; Wang, J.; Zhang, D. Inversion of Precipitation Parameters and Precipitation Type Classification Based on Micro Rain Radar. Chin. J. Atmos. Sci. 2023, 47, 739–755. (In Chinese) [Google Scholar] [CrossRef]
- Qiu, Y.; Feng, N.; He, Y.; Xu, R.; Zhao, D. Characteristics of the Evolution of Precipitation Particles During a Stratiform Precipitation Event in Liupan Mountains. Atmosphere 2024, 15, 732. [Google Scholar] [CrossRef]
- He, Y.; Shu, Z.; Zheng, J.; Jia, X.; Qiu, Y.; Deng, P.; Yan, X.; Lin, T.; Dang, Z.; Lu, C. A Comparative Study on the Vertical Structures and Microphysical Properties of a Mixed Precipitation Process over Different Topographic Positions of the Liupan Mountains in Northwest China. Atmosphere 2022, 14, 44. [Google Scholar] [CrossRef]
- Huo, Z.; Ruan, Z.; Wei, M.; Ge, R.; Li, F.; Ruan, Y. Statistical characteristics of raindrop size distribution in south China summer based on the vertical structure derived from VPR-CFMCW. Atmos. Res. 2019, 222, 47–61. [Google Scholar] [CrossRef]
- Hildebrand, H.P.; Sekhon, R.S. Objective Determination of the Noise Level in Doppler Spectra. J. Appl. Meteorol. 1974, 13, 808–811. [Google Scholar] [CrossRef]
- Atlas, D.; Sekhon, R.S.; Sekhon, R.S. Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. 1973, 11, 1–35. [Google Scholar] [CrossRef]
- Cha, J.-W.; Chang, K.-H.; Yum, S.S.; Choi, Y.-J. Comparison of the bright band characteristics measured by Micro Rain Radar (MRR) at a mountain and a coastal site in South Korea. Adv. Atmos. Sci. 2009, 26, 211–221. [Google Scholar] [CrossRef]
- Wang, H.; Lei, H.; Yang, J. Microphysical processes of a stratiform precipitation event over eastern China: Analysis using micro rain radar data. Adv. Atmos. Sci. 2017, 34, 1472–1482. [Google Scholar] [CrossRef]
- Zhu, Y.; Qiu, Y.; Lu, C. Millimeter wave radar observation of hydrometeor distribution characteristics of cloud in summer in Nagqu, Qinghai-Tibet Plateau. Meteorol. Mon. 2019, 45, 945–957. (In Chinese) [Google Scholar]
- Low, T.B.; List, R. Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies andfragment size distributions in breakup. J. Atmos. Sci. 1982, 39, 1591–1606. [Google Scholar] [CrossRef]
Parameter | Eigenvalue | Snow | Ice | Mixed | Liquid | Drizzle | Rain |
---|---|---|---|---|---|---|---|
P(Ze) | X1/dBZ | −5 | −60 | −40 | −60 | −25 | −10 |
X2/dBZ | 0 | −50 | −17 | −60 | −17 | 5 | |
X3/dBZ | 20 | −10 | 5 | −17 | 4 | 20 | |
X4/dBZ | 25 | 0 | 10 | −10 | 8 | 25 | |
P(V) | X1/m·s−1 | −0.5 | −2 | −2 | −2 | −2 | −1 |
X2/m·s−1 | 0 | −1 | −0.5 | −2 | 0.5 | 2.5 | |
X3/m·s−1 | 2.5 | 1 | 2 | 0.5 | 2 | 10 | |
X4/m·s−1 | 8 | 3 | 4 | 1.5 | 4 | 10 | |
P(W) | X1/m·s−1 | 0 | 0 | 0.1 | 0.1 | 0 | 0 |
X2/m·s−1 | 0 | 0 | 0.4 | 0.4 | 0.5 | 1 | |
X3/m·s−1 | 4 | 0.4 | 4 | 2 | 3 | 3 | |
X4/m·s−1 | 4 | 0.6 | 4 | 3 | 4 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, N.; Shu, Z.; Qiu, Y. Classification of Hydrometeors During a Stratiform Precipitation Event in the Rainy Season of Liupanshan. Atmosphere 2025, 16, 132. https://doi.org/10.3390/atmos16020132
Feng N, Shu Z, Qiu Y. Classification of Hydrometeors During a Stratiform Precipitation Event in the Rainy Season of Liupanshan. Atmosphere. 2025; 16(2):132. https://doi.org/10.3390/atmos16020132
Chicago/Turabian StyleFeng, Nansong, Zhiliang Shu, and Yujun Qiu. 2025. "Classification of Hydrometeors During a Stratiform Precipitation Event in the Rainy Season of Liupanshan" Atmosphere 16, no. 2: 132. https://doi.org/10.3390/atmos16020132
APA StyleFeng, N., Shu, Z., & Qiu, Y. (2025). Classification of Hydrometeors During a Stratiform Precipitation Event in the Rainy Season of Liupanshan. Atmosphere, 16(2), 132. https://doi.org/10.3390/atmos16020132