Post-War Air Quality Index in Mosul City, Iraq: Does War Still Have an Impact on Air Quality Today?
Abstract
:1. Introduction
1.1. Air Pollution During the War (Direct Impact)
1.2. Post-War Air Pollution (Indirect Impact)
1.3. Previous Studies on Air Pollutants in Mosul City
Reference | Shihab 2021 [14] | Shihab & Taha 2014 [24] | Shihab & Al-Jarrah 2015 [29] | Shihab 2022 [26] | Asmel et al. 2023 [12] | Hammoud 2021 [25] | Plumelab 2024 [31] | This Study | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Unit | Season | Winter | Sommer | Winter | Sommer | Winter | Sommer | Win./Som. | Win./Som. | Winter | Somme | Winter | Sommer | Winter | Sommer |
PM2.5 | µg/m3 | Mean | 86.28 | 33.6 | 22.65 | 13.5 | 58.2 | |||||||||
MAX | 198 | 114 | 54 | 15.1 | 88.8 | |||||||||||
MIN | 10.7 | 6 | 8 | 12.3 | 35.8 | |||||||||||
STD | 39.21 | 17.8 | 9.07 | 1.48 | 27.4 | |||||||||||
PM10 | µg/m3 | Mean | 145.05 | 0.534 | 0.783 | 81.1 | 78.92 | 36.1 | 296.7 | |||||||
Max | 348 | 1.572 | 1.289 | 506 | 202 | 51 | 347 | |||||||||
Min | 2.33 | 0.11 | 0.108 | 10 | 23 | 19 | 248 | |||||||||
STD | 69.25 | 0.489 | 0.331 | 90.0 | 35.6 | 16.1 | 49.7 | |||||||||
PM50 | µg/m3 | Mean | 53 | 240 | ||||||||||||
Max | 62.5 | 345 | ||||||||||||||
Min | 45 | 130 | ||||||||||||||
STD | 6.5 | 50.4 | ||||||||||||||
TVOC | ppm | Mean | 2.420 | 1.265 | 1.57 | 0.19 | ||||||||||
Max | 4.040 | 2.314 | 2.10 | 0.274 | ||||||||||||
Min | 0.040 | 0.053 | 0.92 | 0.15 | ||||||||||||
STD | 0.840 | 0.376 | 0.60 | 0.065 | ||||||||||||
HCHO | ppm | Mean | 0.54 | 0.028 | ||||||||||||
Max | 0.58 | 0.056 | ||||||||||||||
Min | 0.50 | 0.37 | ||||||||||||||
STD | 0.04 | 0.028 | ||||||||||||||
CH4 | ppm | Mean | 1.680 | 1.807 | ||||||||||||
Max | 2.260 | 5.208 | ||||||||||||||
Min | 0.020 | 0.119 | ||||||||||||||
STD | 0.530 | 0.848 | ||||||||||||||
CO | ppm | Mean | 1.240 | 0.716 | 0.365 | 9.235 | ||||||||||
Max | 3.560 | 2.344 | 0.700 | 18.100 | ||||||||||||
MIN | 0.390 | 0.138 | 0.000 | 0.000 | ||||||||||||
STD | 0.730 | 0.423 | 0.246 | 5.267 | ||||||||||||
NO | ppm | Mean | 0.12 | 0.04 | 0.036 | 0.008 | ||||||||||
Max | 0.37 | 0.15 | 0.184 | 0.026 | ||||||||||||
MIN | 0.004 | 0.000 | 0.004 | 0.000 | ||||||||||||
STD | 0.137 | 0.058 | 0.035 | 0.006 | ||||||||||||
NO2 | Mean | 0.04 | 0.03 | 0.026 | 0.033 | 0.290 | 0.330 | 0.014 | 0.005 | 0.04 | 0.015 | |||||
MAX | 0.20 | 0.07 | 0.055 | 0.091 | 0.600 | 0.800 | 0.027 | 0.010 | 0.05 | 0.018 | ||||||
MIN | 0.002 | 0.005 | 0.009 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.034 | 0.015 | ||||||
STD | 0.063 | 0.028 | 0.041 | 0.019 | 0.197 | 0.260 | 0.007 | 0.002 | 0.009 | 0.001 | ||||||
NOx | ppm | Mean | 0.176 | 0.078 | 0.062 | 0.041 | ||||||||||
Max | 0.487 | 0.235 | 0.217 | 0.107 | ||||||||||||
MIN | 0.009 | 0.005 | 0.014 | 0.001 | ||||||||||||
STD | 0.188 | 0.086 | 0.041 | 0.021 | ||||||||||||
SO2 | ppm | Mean | 0.016 | 0.230 | 0.435 | 0.011 | 0.006 | |||||||||
MAX | 0.042 | 0.900 | 1.000 | 0.013 | 0.007 | |||||||||||
MIN | 0.003 | 0.000 | 0.000 | 0.007 | 0.005 | |||||||||||
STD | 0.008 | 0.287 | 0.325 | 0.002 | 0.002 | |||||||||||
H2S | ppm | Mean | 0.016 | 0.030 | 1.210 | |||||||||||
MAX | 0.042 | 0.000 | 0.000 | |||||||||||||
MIN | 0.003 | 0.300 | 5.000 | |||||||||||||
STD | 0.008 | 0.092 | 1.607 | |||||||||||||
O3 | ppm | Mean | 0.007 | 0.044 | 0.028 | 0.058 | 0.185 | 0.247 | 0.014 | 0.046 | ||||||
MAX | 0.010 | 0.046 | 0.069 | 0.094 | 0.800 | 2.000 | 0.039 | 0.050 | ||||||||
MIN | 0.005 | 0.043 | 0.001 | 0.007 | 0.000 | 0.000 | 0.001 | 0.040 | ||||||||
STD | 0.003 | 0.001 | 0.016 | 0.025 | 0.230 | 0.484 | 0.012 | 0.002 | ||||||||
AQI | - | Mean | 86.3 | 116.8 | 111.4 | 89.8 | 40 | 330 | ||||||||
MAX | 157.2 | 448.5 | 283 | 176 | 49 | 386 | ||||||||||
MIN | 30.8 | 37.6 | 31 | 39 | 32 | 276 | ||||||||||
STD | 41.89 | 90.44 | 49.9 | 29.7 | 8 | 55 | ||||||||||
Year | 02/2013–01/2014 | 01/2010–09/2010 | 05/2013–04/2014 | 02/2013–01/2014 | 12/2013–03/2014 | 12/24–01/2025 | Jul-24 | 01/22–12/22 | ||||||||
Before/After war | before war | before war | before war | before war | After war | after war | after war |
2. Methodology
2.1. Air Quality Monitoring Sites
2.2. Analytical Methods
2.3. Air Quality Index (AQI)
- C
- concentration level of pollutant
- Clow
- low breakpoint of the concentration in the present concentration interval
- Chigh
- high breakpoint of the concentration in the present concentration interval
- Ilow
- lowest index value in the present concentration interval
- Ihigh
- highest index value in the present concentration interval
2.4. Limitations in Methodology
3. Result and Discussion
3.1. Variation of Daily Average Values of All Parameters According to the Sites
3.1.1. Particles Matter (PM2.5, PM10)
3.1.2. Total Volatile Organic Carbons (TVOC)
3.1.3. Formaldehyde HCHO
3.1.4. Nitrogen Dioxide NO2
3.1.5. Sulphur Dioxide SO2
3.2. Annually Average Values and Seasonal Variation of All Parameters According to the Sites
3.3. Air Quality Index (AQI) and Its Study-Based Variation
3.4. T-Test Values of Seasonal Variation of All Parameters
3.5. Comparison of the Annual Average Values of Air Pollutants Parameters Before and After the War
3.6. Correlation of All Parameters Within the Study Period
Spearman Correlation Coefficient
- Strong positive correlations:
- TVOC and NO2 (0.99): This near-perfect positive correlation suggests that these two pollutants are highly related, likely due to shared sources or similar environmental behaviours.
- TVOC and HCHO (0.90): A strong positive correlation indicates that as TVOC levels increase, HCHO levels also tend to increase, possibly due to overlapping sources or chemical interactions.
- Strong negative correlations:
- PM2.5 and HCHO (−0.97): This strong negative correlation suggests that higher PM2.5 levels are associated with lower HCHO concentrations, which could reflect differing sources or removal mechanisms.
- PM10 and TVOC (−0.92): A strong negative correlation indicates that as PM10 levels increase, TVOC levels tend to decrease, highlighting potential trade-offs in pollutant dynamics.
- Moderate correlation between NO2 and SO2 (0.70): A moderate positive correlation suggests some degree of association between these pollutants, possibly due to overlapping sources like combustion processes.
- Weak correlation between PM2.5 and SO2 (−0.37): A weak negative correlation indicates little to no monotonic relationship between these variables, suggesting they may be influenced by different factors. This indicates that these pollutants likely originate from different sources [69,70] (see Figure 5).
3.7. Meteorological Impact Parameters
3.7.1. Meteorological Conditions
3.7.2. Correlation Between Pollution Parameters and Meteorological Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Protopsaltis, C. Air pollution caused by war activity. WIT Trans. Ecol. Environ. 2012, 157, 93–98. [Google Scholar] [CrossRef]
- Kabakian, V. War and Air Pollution. In Lebanon Rapid Environmental Assessment for Greening Recovery, Reconstruction and Reform; United Nations Development Programm: New York, NY, USA, 2006; Available online: https://www.researchgate.net/profile/Vahakn-Kabakian/publication/236165943_War_and_Air_Pollution/links/00b7d516bab6c45eb (accessed on 3 January 2025).
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A. Deteriorating Environmental Quality with Special Reference to War and Its Impact on Climate Change. Natl. Acad. Sci. Lett. 2023, 47, 447–450. [Google Scholar] [CrossRef] [PubMed]
- UN United Nations Environment Programme. Environmental Issues in Areas Retaken from ISIL Mosul, Iraq: Rapid Scoping Mission July–August 2017—Technical Note; United Nations Environment Programme (UNEP): New York, NY, USA, 2017; Available online: https://wedocs.unep.org/20.500.11822/22434 (accessed on 22 August 2023).
- Rasul, A.; Ibrahim, G.R.F.; Hameed, H.M.; Tansey, K. A trend of increasing burned areas in Iraq from 2001 to 2019. Environ. Dev. Sustain. 2021, 23, 5739–5755. [Google Scholar] [CrossRef]
- Wedeman, B.; Alkhshali, H. Life Under ISIS: Iraqis Choke as Sabotaged Oil Wells Blaze. CNN, 13 October 2016. [Google Scholar]
- UNEP; OCHA. A Rapid Overview of Environmental and Health Risks Related to Chemical Hazards in the Mosul Humanitarian Response; United Nations Environment Programme (UNEP); United Nations Office for the Coordination of Humanitarian Affairs (OCHA): New York, NY, USA, 2016; Available online: https://reliefweb.int/report/iraq/rapid-overview-environmental-and-health-risks-related-chemical-hazards-mosul (accessed on 20 August 2022).
- UN Habitat. City Profile of Mosul, Iraq: Multi-Sector Assessment of a City Under Siege; United Nations Human Settlements Programme (UN-Habitat): Nairobi, Kenya, 2016; Available online: https://unhabitat.org/sites/default/files/documents/2019-04/un-habitat_mosulcityprofile_lowres_170409_v6.pdf (accessed on 15 May 2023).
- Zwijnenburg, W.; Postma, F. Living Under a Black Sky: Conflict Pollution and Environmental Health Concerns in Iraq; PAX: Utrecht, The Netherlands, 2017; Available online: https://paxforpeace.nl/wp-content/uploads/sites/2/import/import/pax-report-living-under-a-black-sky.pdf (accessed on 16 July 2023).
- WHO. WHO Global air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO: Geneva, Switzerland, 2021; ISBN 978-92-4-003422-8. [Google Scholar]
- Asmel, N.K.; Muhammed, F.I.; Hassan, S.I.; Ganiyu, A.A.; Lakkaboyana, S.K. Assessment of ambient air quality in urban places of Mosul City, Iraq. Int. J. Environ. Sci. Technol. 2023, 20, 3247–3264. [Google Scholar] [CrossRef]
- Buxbaum, I.; Nagl, C.; Spangl, W. Sekundäres Anorganisches Aerosol: Beiträge zur PM-Belastung in Österreich REP-0591; Umweltbundesamt GmbH: Wien, Austria, 2014; ISBN 978-3-99004-405-61. Available online: https://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0591.pdf (accessed on 16 July 2023).
- Shihab, A.S. Assessment of Ambient Air Quality of Mosul City/Iraq Via Air Quality Index. J. Ecol. Eng. 2021, 22, 241–250. [Google Scholar] [CrossRef]
- Björnham, O.; Grahn, H.; von Schoenberg, P.; Liljedahl, B.; Waleij, A.; Brännström, N. The 2016 Al-Mishraq sulphur plant fire: Source and health risk area estimation. Atmos. Environ. 2017, 169, 287–296. [Google Scholar] [CrossRef]
- Zalakeviciute, R.; Mejia, D.; Alvarez, H.; Bermeo, X.; Bonilla-Bedoya, S.; Rybarczyk, Y.; Lamb, B. War Impact on Air Quality in Ukraine. Sustainability 2022, 14, 13832. [Google Scholar] [CrossRef]
- Savtchenko, A.K.; Khayat, M.G. NO2 anomalies—Economy attribution and rapid climate response. Atmos. Environ. 2021, 254, 118351. [Google Scholar] [CrossRef]
- Lelieveld, J.; Beirle, S.; Hörmann, C.; Stenchikov, G.; Wagner, T. Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East. Sci. Adv. 2015, 1, e1500498. [Google Scholar] [CrossRef]
- Directorate of Transport and Communication Statistics. Statistics on Power and Fuel Consumption in Moshul; Directorate of Transport and Communication Statistics: Erbil, Iraq, 2022.
- Shihab, A.S.; Fadhil, M.N.; Khidhir, O. Distribution of Dustfall in Selected Sites In Mosul City and around It/IRAQ. Tishreen Univ. J. Res. Sci. Stud. Eng. Sci. Ser. 2010, 32, 191–203. [Google Scholar]
- Al-Sayegh, A.H.; Al-Kattan, M.M. The pollution produced by dust in Badush Cement Factory Area. J. Environ. Dev. 1986, 61, 6–9. [Google Scholar]
- Al-Hayali, A.K. Ecological Study of Some Pollutants in Mosul City. Master’s. Thesis, Mosul University, Mosul, Iraq, 2001. [Google Scholar]
- Al-Saffawi, A.Y. Environmental Pollution of Mosul City and Methods of Remediation. Ph.D. Thesis, Mosul University, Mosul, Iraq, 2006. [Google Scholar]
- Shihab, A.S.; Taha, T.A. Suspended Particulates Levels in the Left Bank Residential Areas of Mosul City and Its Relation with Some Meteorological Factors. AL-Rafdain Eng. J. AREJ 2014, 22, 158–164. [Google Scholar] [CrossRef]
- Hammoud, J. Spatial Analysis of Air Pollutant Concentrations in the City of Karbala. Master’s Thesis, Karbala University, Karbala, Iraq, 2021. [Google Scholar]
- Shihab, A. Identification of Air Pollution Sources and Temporal Assessment of Air Quality at a Sector in Mosul City Using Principal Component Analysis. Pol. J. Environ. Stud. 2022, 31, 2223–2235. [Google Scholar] [CrossRef]
- Abdulkadhim, A.; Dahlan, N.H.M.; Rahman, R.A. Air pollution and its governing legal administrative mechanisms in Iraq. J. Law Policy Glob. 2017, 62, 82–88. [Google Scholar]
- Farahani, V.J.; Arhami, M. Contribution of Iraqi and Syrian dust storms on particulate matter concentration during a dust storm episode in receptor cities: Case study of Tehran. Atmos. Environ. 2020, 222, 117163. [Google Scholar] [CrossRef]
- Shihab, A.; Al-Jarrah, O. The Levels of Ozone and NitrogenOxides and Its Relationship with Metrological Factors. AL-Rafdain Eng. J. (AREJ) 2015, 23, 98–109. [Google Scholar] [CrossRef]
- Al-Jarrah, O.A. The Levels of Some Air Pollutants in Selected Sites of Mosul City, and Its Relationship with the Traffic Volume and Meteorological Factors. Master’s Thesis, Mosul University, Mosul, Iraq, 2015. [Google Scholar]
- Plumelabs. Air Quality in Mosul: Live Air Quality Report and Air Quality Forecast in Mosul. Available online: https://air.plumelabs.com/air-quality-in-Mosul-pLW (accessed on 15 November 2024).
- NASA. Air Quality—Observations from Space: Mosulk; U.S. Environmental Protection Agency (EPA): Research Triangle Park, NC, USA, 2021. Available online: https://airquality.gsfc.nasa.gov/no2/world/middle-east/mosul (accessed on 7 April 2023).
- Mintz, D. Technical Assistance Document for the Reporting of Daily Air Quality—The Air Quality Index (AQI); EPA-454/B-18-007; U.S. Environmental Protection Agency (EPA): Research Triangle Park, NC, USA, 2021.
- Lee, Y.M.; Lee, J.H.; Kim, H.-C.; Ha, E. Effects of PM10 on mortality in pure COPD and asthma-COPD overlap: Difference in exposure duration, gender, and smoking status. Sci. Rep. 2020, 10, 2402. [Google Scholar] [CrossRef]
- Seihei, N.; Farhadi, M.; Takdastan, A.; Asban, P.; Kiani, F.; Mohammadi, M.J. Short-term and long-term effects of exposure to PM10. Clin. Epidemiol. Glob. Health 2024, 27, 101611. [Google Scholar] [CrossRef]
- Renna, S.; Lunghi, J.; Granella, F.; Malpede, M.; Di Simine, D. Impacts of agriculture on PM10 pollution and human health in the Lombardy region in Italy. Front. Environ. Sci. 2024, 12, 1369678. [Google Scholar] [CrossRef]
- UBA Umweltbundesamt. Luft: Umweltzustand und Trends; UBA Umweltbundesamt: Dessau, Germany, 2023; Available online: https://www.umweltbundesamt.de/daten/luft (accessed on 12 March 2024).
- Bruyninckx, H. The European Environment Agency. Impact 2017, 2017, 61–62. [Google Scholar] [CrossRef]
- Philip, S.; Martin, R.V.; Snider, G.; Weagle, C.L.; van Donkelaar, A.; Brauer, M.; Henze, D.K.; Klimont, Z.; Venkataraman, C.; Guttikunda, S.K.; et al. Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate matter source in global atmospheric models. Environ. Res. Lett. 2017, 12, 44018. [Google Scholar] [CrossRef]
- Canepari, S.; Astolfi, M.L.; Farao, C.; Maretto, M.; Frasca, D.; Marcoccia, M.; Perrino, C. Seasonal variations in the chemical composition of particulate matter: A case study in the Po Valley. Part II: Concentration and solubility of micro- and trace-elements. Environ. Sci. Pollut. Res. Int. 2014, 21, 4010–4022. [Google Scholar] [CrossRef] [PubMed]
- Quemerais, B.; Diaz, E.; Poulin, I.; Marois, A. Characterization of Atmospheric Emission Produced by Live Gun Firing: Test on the M777 155 mm Howitzer; Technical Report TR 2007-102; Defence Research and Development Canada (DRDC): Toronto, ON, Canada, 2007; Available online: https://www.researchgate.net/publication/235181180_Characterization_of_Atmospheric_Emission_Produced_by_Live_Gun_Firing_Test_on_the_M777_155_mm_Howitzer#fullTextFileContent (accessed on 19 December 2023).
- Salbu, B.; Lind, O.C. Radioactive Particles Released into the Environment from Nuclear Events. In Actinide Nanoparticle Research; Kalmykov, S.N., Denecke, M.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 335–359. ISBN 978-3-642-11431-1. [Google Scholar]
- Zhang, J.; Su, Y.; Chen, C.; Guo, W.; Tan, Q.; Feng, M.; Song, D.; Jiang, T.; Chen, Q.; Li, Y.; et al. Chemical composition, sources and formation mechanism of urban PM2.5 in Southwest China: A case study at the beginning of 2023. Atmos. Chem. Phys. 2024, 24, 2803–2820. [Google Scholar] [CrossRef]
- IPCC Intergovernmental Panel on Climate Change. United Nations Body for Assessing the Sicence Related to Climate Change—Chapter 5; IPCC Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023; Available online: https://archive.ipcc.ch/ipccreports/tar/wg1/140.htm (accessed on 22 May 2024).
- Dobslaw, D.; Engesser, K.-H.; Störk, H.; Gerl, T. Low-cost process for emission abatement of biogas internal combustion engines. J. Clean. Prod. 2019, 227, 1079–1092. [Google Scholar] [CrossRef]
- Minnesota Pollution Control Agency. Air Pollutant—Volatile Organic Compounds (VOCs); Minnesota Pollution Control Agency: St. Paul, MN, USA, 2024. Available online: https://www.pca.state.mn.us/pollutants-and-contaminants/volatile-organic-compounds-vocs (accessed on 18 February 2024).
- Chen, X.; Feng, L.; Luo, H.; Cheng, H. Analyses on influencing factors of airborne VOCS pollution in taxi cabins. Environ. Sci. Pollut. Res. Int. 2014, 21, 12868–12882. [Google Scholar] [CrossRef] [PubMed]
- Dovrou, E.; Bates, K.H.; Moch, J.M.; Mickley, L.J.; Jacob, D.J.; Keutsch, F.N. Catalytic role of formaldehyde in particulate matter formation. Proc. Natl. Acad. Sci. USA 2022, 119, e2113265119. [Google Scholar] [CrossRef] [PubMed]
- EPA Environmental Protection Agency. What Is Paticulate Matter; EPA Environmental Protection Agency: Boston, MA, USA, 2022. Available online: https://www3.epa.gov/region1/eco/uep/particulatematter (accessed on 12 June 2024).
- Bishop, J.L. Emission Factors from Deactivation of Muitions, Part I; Tooele Army Depot Utah: Tooele, UT, USA, 1984. Available online: https://semspub.epa.gov/work/06/9546007.pdf (accessed on 12 April 2023).
- Quémerais, B.; Diaz, E.; Poulin, I.; Marois, A. Characterization of Atmospheric Emissions Produced by Live Gun Firing: Test on the Carl Gustav Anti-Tank, 84 mm Weapon; TR 2007-103; Defence Research and Development Canada (DRDC). Toronto, ON, Canada. 2008. Available online: https://apps.dtic.mil/sti/pdfs/ADA480051.pdf (accessed on 5 March 2024).
- Lustgarten, A.; The Bomb That Went Off Twice: The Explosive Compound RDX Helped Make America a Superpower. Now, It’s Poisining the Nations’s Water and Soil. Available online: https://features.propublica.org/bombs-in-our-backyard/military-pollution-rdx-bombs-holston-cornhusker/ (accessed on 25 July 2023).
- Nussbaumer, C.M.; Crowley, J.N.; Schuladen, J.; Williams, J.; Hafermann, S.; Reiffs, A.; Axinte, R.; Harder, H.; Ernest, C.; Novelli, A.; et al. Measurement report: Photochemical production and loss rates of formaldehyde and ozone across Europe. Atmos. Chem. Phys. 2021, 21, 18413–18432. [Google Scholar] [CrossRef]
- Oluwoye, I.; Dlugogorski, B.Z.; Gore, J.; Oskierski, H.C.; Altarawneh, M. Atmospheric emission of NO from mining explosives: A critical review. Atmos. Environ. 2017, 167, 81–96. [Google Scholar] [CrossRef]
- Altahaan, Z.; Dobslaw, D. Assessment of the Impact of War on Concentrations of Pollutants and Heavy Metals and Their Seasonal Variations in Water and Sediments of the Tigris River in Mosul/Iraq. Environments 2024, 11, 10. [Google Scholar] [CrossRef]
- Altahaan, Z.F.; Dobslaw, D. Assessment of post-war groundwater quality in urban areas of Mosul city /Iraq and surrounding areas for drinking and irrigation purposes by using the Canadian Environment Water Quality Index CCME-WQI and Heavy Metal Pollution Index HPI. World J. Adv. Res. Rev. 2024, 21, 2461–2481. [Google Scholar] [CrossRef]
- Yang, Z.; Li, K.; Tsona, N.T.; Luo, X.; Du, L. SO2 enhances aerosol formation from anthropogenic volatile organic compound ozonolysis by producing sulfur-containing compounds. Atmos. Chem. Phys. 2023, 23, 417–430. [Google Scholar] [CrossRef]
- Li, H.; Guo, B.; Han, M.; Tian, M.; Zhang, J. Particulate Matters Pollution Characteristic and the Correlation between PM (PM2.5, PM10) and Meteorological Factors during the Summer in Shijiazhuang. J. Environ. Prot. 2015, 06, 457–463. [Google Scholar] [CrossRef]
- Bose, A.; Roy Chowdhury, I. Investigating the association between air pollutants’ concentration and meteorological parameters in a rapidly growing urban center of West Bengal, India: A statistical modeling-based approach. Model. Earth Syst. Environ. 2023, 9, 2877–2892. [Google Scholar] [CrossRef]
- Jo, W.-K.; Chun, H.-H.; Lee, S.-O. Evaluation of Atmospheric Volatile Organic Compound Characteristics in Specific Areas in Korea Using Long-Term Monitoring Data. Environ. Eng. Res. 2012, 17, 103–110. [Google Scholar] [CrossRef]
- Habeebullah, T.M. An Analysis of Air Pollution in Makkah—A View Point of Source Identification. Environ. Asia 2013, 2, 11–17. [Google Scholar] [CrossRef]
- Mackiewicz-Walec, E.; Krzebietke, S.; Lenart, L.; Rogalski, L.; Smoczyński, L. Changes in sulphur dioxide concentrations in the atmospheric air assessed during short-term measurements in the vicinity of Olsztyn, Poland. J. Elem. 2014, 19, 735–748. [Google Scholar] [CrossRef]
- Jumaah, H.J.; Ameen, M.H.; Mahmood, S.; Jumaah, S.J. Study of air contamination in Iraq using remotely sensed Data and GIS. Geocarto Int. 2023, 38, 2178518. [Google Scholar] [CrossRef]
- Rabee, A.M. Estimating the health risks associated with air pollution in Baghdad City, Iraq. Environ. Monit. Assess. 2015, 187, 4203. [Google Scholar] [CrossRef] [PubMed]
- Al-Salman, A.A.; Taghiebadi; Maknoon, R.; Khorsandi, B. Mitigation Strategies for Reducing of Air Pollutant, Case Study: Al-Hilla City—Babylon Province/Iraq. Ann. Rom. Soc. Cell Biol. 2021, 25, 7460–7469. [Google Scholar]
- EIA US Energy Information Administration. Country Analysis Brief: Iraq; EIA US Energy Information Administration: Washington, DC, USA, 2024. Available online: https://www.eia.gov/international/content/analysis/countries_long/Iraq/pdf/iraq_2024.pdf (accessed on 22 June 2023).
- Kong, L.; Xin, J.; Zhang, W.; Wang, Y. The empirical correlations between PM2.5, PM10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS. Environ. Pollut. 2016, 216, 350–360. [Google Scholar] [CrossRef]
- Sahanavin, N.; Prueksasit, T.; Tantrakarnapa, K. Relationship between PM10 and PM2.5 levels in high-traffic area determined using path analysis and linear regression. J. Environ. Sci. 2018, 69, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Bugdayci, I.; Ugurlu, O.; Kunt, F. Spatial Analysis of SO2, PM10, CO, NO2, and O3 Pollutants: The Case of Konya Province, Turkey. Atmosphere 2023, 14, 462. [Google Scholar] [CrossRef]
- Wambebe, N.M.; Duan, X. Air Quality Levels and Health Risk Assessment of Particulate Matters in Abuja Municipal Area, Nigeria. Atmosphere 2020, 11, 817. [Google Scholar] [CrossRef]
- AccuWeather. Moshul—Current Air Quality. Available online: https://www.accuweather.com/en/iq/mosul/210666/air-quality-index/210666 (accessed on 30 June 2023).
- Available online: www.weather-atlas.com (accessed on 30 June 2023).
- Action Contre la Faim. Water Scarcity Index for Ninewa Governorate, Iraq: 2022/2023; Action Contre la Faim: Montreuil, France, 2022; Available online: https://www.actioncontrelafaim.org/wp-content/uploads/2022/09/Drought-Prediction-Tool-2022-ACF-Iraq.pdf (accessed on 30 June 2023).
- Zender-Świercz, E.; Galiszewska, B.; Telejko, M.; Starzomska, M. The effect of temperature and humidity of air on the concentration of particulate matter—PM2.5 and PM10. Atmos. Res. 2024, 312, 107733. [Google Scholar] [CrossRef]
- Wang, J.; Ogawa, S. Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health 2015, 12, 9089–9101. [Google Scholar] [CrossRef] [PubMed]
- Karar, K.; Gupta, A.K.; Kumar, A.; Biswas, A.K. Seasonal variations of PM10 and TSP in residential and industrial sites in an urban area of Kolkata, India. Environ. Monit. Assess. 2006, 118, 369–381. [Google Scholar] [CrossRef]
- Gupta, A.K.; Patil, R.S.; Gupta, S.K. A long-term study of oxides of nitrogen, sulphur dioxide, and ammonia for a port and harbor region in India. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2003, 38, 2877–2894. [Google Scholar] [CrossRef] [PubMed]
No. | Location | Latitude N | Longitude E | Area Type | Description |
---|---|---|---|---|---|
S1 | Nineveh Environment Directorate | 36°375474″ N | 33°144447″ E | Residential area | Located on the left coast in a main street; close to a busy traffic intersection. |
S2 | Public Library | 36°352716″ N | 33°225501″ E | Commercial area | Located on the left coast in a main street; close to a busy traffic intersection; close to debris area. |
S3 | Fever Hospital | 36°326370″ N | 33°184714″ E | Residential area | Located on left coast; close to an electrical generator. |
S4 | Mosul Municipality | 36°336212″ N | 33°140137″ E | Commercial area | On right coast; close to a busy traffic intersection; close to the debris area. |
S5 | Health Center | 36°294598″ N | 33°150632″ E | Residential and commercial area | Located on right coast; located in a main street; close to the debris area. |
S6 | Alshabab Sport center | 36°273241″ N | 33°163325″ E | Service area | Located on right coast; close to a busy traffic intersection and an electrical generator. |
Pollution | Avg. Time | AQG Level |
---|---|---|
PM2.5 (µg/m3) | Annual | 5 |
24 h | 15 | |
PM10 (µg/m3) | Annual | 15 |
24 h | 45 | |
NO2 (µg/m3) | Annual | 10 |
24 h | 25 | |
SO2 (µg/m3) | Annual | - |
24 h | 40 | |
TVOC (mg/m3) | Annual | - |
24 h | 0.3–0.5 | |
HCHO (mg/m3) | Annual | - |
24 h | 0.1 |
Parameter | PM2.5 | PM10 | TVOC | HCHO | NO2 | SO2 | |
---|---|---|---|---|---|---|---|
WHO 2021 | 15 μg/m3 | 45 μg/m3 | 0.5 mg/m3 | 0.1 mg/m3 | 25 μg/m3 | 40 μg/m3 | |
S1 | Mean | 30.54 | 138.62 | 1.30 | 0.154 | 24.44 | 16.98 |
MAX | 86.00 | 442.00 | 4.00 | 0.515 | 51.00 | 40.00 | |
MIN | 10.00 | 12.00 | 0.13 | 0.049 | 6.00 | 14.00 | |
STD | 30.87 | 178.34 | 1.56 | 0.055 | 11.8 | 9.9 | |
S2 | Mean | 40.64 | 187.83 | 1.58 | 0.402 | 38.33 | 24.77 |
Max | 160.00 | 560.00 | 4.50 | 1.545 | 96.00 | 48.00 | |
Min | 12.00 | 18.00 | 0.34 | 0.017 | 14.00 | 17.44 | |
STD | 57.06 | 256.06 | 1.88 | 0.055 | 36.9 | 12.0 | |
S3 | Mean | 34.92 | 109.58 | 1.06 | 0.179 | 21.33 | 20.92 |
Max | 89.00 | 445.00 | 3.00 | 0.295 | 51.00 | 40.0 | |
Min | 8.00 | 8.00 | 0.12 | 0.01 | 12.00 | 20.35 | |
STD | 38.83 | 168.81 | 1.29 | 0.055 | 6.5 | 10.5 | |
S4 | Mean | 45.17 | 193.33 | 1.98 | 0.442 | 44.14 | 25.09 |
Max | 110.00 | 661.00 | 4.00 | 1.145 | 87.00 | 48.00 | |
Min | 16.00 | 20.00 | 0.28 | 0.025 | 12.00 | 13.57 | |
STD | 42.94 | 216.37 | 1.65 | 0.055 | 9.3 | 13.4 | |
S5 | Mean | 30.33 | 117.08 | 0.78 | 0.092 | 21.57 | 22.56 |
Max | 88.00 | 442.00 | 2.04 | 0.745 | 33.00 | 35.85 | |
MIN | 6.00 | 12.00 | 0.12 | 0.013 | 9.00 | 17.44 | |
STD | 37.94 | 174.02 | 0.85 | 0.244 | 9.83 | 7.27 | |
S6 | Mean | 44.10 | 165.70 | 1.40 | 0.245 | 32.30 | 35.90 |
MAX | 112 | 576 | 3 | 0.955 | 62.00 | 46.82 | |
MIN | 16.00 | 21.00 | 0.31 | 0.015 | 12.00 | 17.44 | |
STD | 45.2 | 228.4 | 1.293 | 0.154 | 21.81 | 15 |
Parameter | PM2.5 | PM10 | TVOC | HCHO | NO2 | SO2 | Temperature °C | Wind km/h | Humidity % | Rainfall mm |
---|---|---|---|---|---|---|---|---|---|---|
WHO 2011 | 5 μg/m3 | 15 μg/m3 | 0.5 mg/m3 | 0.1 mg/m3 | 10 μg/m3 | 40 μg/m3 | ||||
January | 12.33 | 19.00 | 3.38 | 0.785 | 106 | 35.55 | 1.2 | 3 NW | 70 | 62.5 |
February | 13.00 | 51.00 | 2.71 | 0.725 | 84.67 | 32.36 | 9.1 | 8 SW | 80 | 62.7 |
March | 17.67 | 95.33 | 3.03 | 0.425 | 66.67 | 23.58 | 13.05 | 6 SW | 66 | 63.2 |
April | 62.00 | 231.33 | 1.04 | 0.065 | 39.33 | 22.04 | 18.2 | 10 SW | 56 | 44.1 |
May | 107.50 | 521.00 | 0.31 | 0.005 | 29.33 | 21.82 | 24.45 | 12 NW | 30 | 15.2 |
June | 88.83 | 347.50 | 0.25 | 0.005 | 29.67 | 20.86 | 30.25 | 18 SW | 12 | 1.1 |
July | 50.17 | 294.83 | 0.27 | 0.015 | 31.00 | 13.12 | 33.95 | 15 NW | 6 | 0 |
August | 35.83 | 248.00 | 0.44 | 0.075 | 30.00 | 12.88 | 33.4 | 13 SW | 5 | 0 |
September | 30.67 | 233.33 | 0.84 | 0.235 | 36.67 | 14.04 | 28.65 | 12 SW | 8 | 0.3 |
October | 15.50 | 178.67 | 0.98 | 0.395 | 37.33 | 17.44 | 22.05 | 5 NW | 23 | 11.8 |
November | 16.50 | 46.50 | 1.20 | 0.575 | 49.67 | 15.37 | 14.15 | 4 SW | 38 | 45 |
December | 15.17 | 38.50 | 1.48 | 0.675 | 69.33 | 21.38 | 8.95 | 6 SW | 63 | 58 |
Mean | 38.76 | 192.08 | 1.33 | 0.325 | 50.81 | 21.87 | 19.78333 | 14 | 38 | 30.3 |
MAX | 107.50 | 521.00 | 3.38 | 0.775 | 105.80 | 35.55 | 33.95 | 18 | 80 | 63.2 |
MIN | 12.33 | 19.00 | 0.25 | 0.005 | 29.33 | 12.88 | 1.2 | 3 | 5 | 0 |
Parameter | T | p | Df | Status |
---|---|---|---|---|
PM2.5 | 3.833896 | 0.001648901 | 10 | 1 |
PM10 | 4.700504 | 0.000420462 | 10 | 1 |
TVOC | −3.62857 | 0.002311747 | 10 | 1 |
HCHO | −7.11706 | 1.61448 × 10−5 | 10 | 1 |
NO2 | −3.5763 | 0.002521302 | 10 | 1 |
SO2 | −1.80277 | 0.04019654 | 10 | 1 |
Parameter | Previous Study (2014) | Current Study (2022) | Factor |
---|---|---|---|
PM2.5 μg/m3 | ND | 39 | ND |
PM10 μg/m3 | 157 | 192 | 1.2 |
TVOC mg/m3 | 0.033 | 1.33 | 40.3 |
HCHO mg/m3 | ND | 0.38 | ND |
NO2 μg/m3 | 24.3 | 50.8 | 2 |
SO2 μg/m3 | 18 | 21 | 1.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altahaan, Z.; Dobslaw, D. Post-War Air Quality Index in Mosul City, Iraq: Does War Still Have an Impact on Air Quality Today? Atmosphere 2025, 16, 135. https://doi.org/10.3390/atmos16020135
Altahaan Z, Dobslaw D. Post-War Air Quality Index in Mosul City, Iraq: Does War Still Have an Impact on Air Quality Today? Atmosphere. 2025; 16(2):135. https://doi.org/10.3390/atmos16020135
Chicago/Turabian StyleAltahaan, Zena, and Daniel Dobslaw. 2025. "Post-War Air Quality Index in Mosul City, Iraq: Does War Still Have an Impact on Air Quality Today?" Atmosphere 16, no. 2: 135. https://doi.org/10.3390/atmos16020135
APA StyleAltahaan, Z., & Dobslaw, D. (2025). Post-War Air Quality Index in Mosul City, Iraq: Does War Still Have an Impact on Air Quality Today? Atmosphere, 16(2), 135. https://doi.org/10.3390/atmos16020135