Modeling Return Levels of Non-Stationary Rainfall Extremes Due to Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
- Representation of diverse climatic regions: The chosen stations encompass a variety of climatic zones throughout Iran, ensuring a comprehensive overview of the country’s meteorological patterns.
- Data availability: Preference was given to stations with the longest continuous records, allowing us to analyze trends and variations in rainfall over an extended period.
2.2. Trend Test
2.3. Stationary and Non-Stationary Analysis of Extreme Values
2.4. Parameter Estimate Using Bayesian Inference
2.5. Model Evaluation
2.5.1. Model Selection Based on Model Complexity
2.5.2. Model Selection Based on Minimum Residual
2.6. Stationary and Non-Stationary Return Level Estimates
3. Results
3.1. Trend Analysis
3.2. Model Selection
3.3. Return Level Estimate
3.3.1. Stationary Return Levels of Extreme Rainfall
3.3.2. Non-Stationary Return Level Change
3.3.3. Non-Stationary Return Periods and Return Levels
3.4. Tail Behavior of Rainfall Extremes
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ossandón, Á.; Rajagopalan, B.; Kleiber, W. Spatial-temporal multivariate semi-Bayesian hierarchical framework for extreme precipitation frequency analysis. J. Hydrol. 2021, 600, 126499. [Google Scholar] [CrossRef]
- Vu, T.M.; Mishra, A.K. Nonstationary frequency analysis of the recent extreme precipitation events in the United States. J. Hydrol. 2019, 575, 999–1010. [Google Scholar] [CrossRef]
- Khan, F.; Ali, S.; Mayer, C.; Ullah, H.; Muhammad, S. Climate change and spatio-temporal trend analysis of climate extremes in the homogeneous climatic zones of Pakistan during 1962–2019. PLoS ONE 2022, 17, e0271626. [Google Scholar] [CrossRef]
- Thackeray, C.W.; Hall, A.; Norris, J.; Chen, D. Constraining the increased frequency of global precipitation extremes under warming. Nat. Clim. Change 2022, 12, 441–448. [Google Scholar] [CrossRef]
- Martinkova, M.; Kysely, J. Overview of observed Clausius-Clapeyron scaling of extreme precipitation in midlatitudes. Atmosphere 2020, 11, 786. [Google Scholar] [CrossRef]
- Ivancic, T.J.; Shaw, S.B. Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Clim. Change 2015, 133, 681–693. [Google Scholar] [CrossRef]
- Tian, Q.; Li, Z.; Sun, X. Frequency analysis of precipitation extremes under a changing climate: A case study in Heihe River basin, China. J. Water Clim. Change 2021, 12, 772–786. [Google Scholar] [CrossRef]
- Pesce, M.; Dallan, E.; Marra, F.; Borga, M. A time-dependent non-asymptotic statistical analysis of extreme precipitation events. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. [Google Scholar] [CrossRef]
- Cheng, L.; AghaKouchak, A. Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate. Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Serinaldi, F.; Kilsby, C.G. Stationarity is undead: Uncertainty dominates the distribution of extremes. Adv. Water Resour. 2015, 77, 17–36. [Google Scholar] [CrossRef]
- Sarhadi, A.; Soulis, E.D. Time-varying extreme rainfall intensity-duration-frequency curves in a changing climate. Geophys. Res. Lett. 2017, 44, 2454–2463. [Google Scholar] [CrossRef]
- Katz, R.W. Techniques for estimating uncertainty in climate change scenarios and impact studies. Clim. Res. 2002, 20, 167–185. [Google Scholar] [CrossRef]
- Griffis, V.W.; Stedinger, J.R. The use of GLS regression in regional hydrologic analyses. J. Hydrol. 2007, 344, 82–95. [Google Scholar] [CrossRef]
- Gregersen, I.B.; Madsen, H.; Rosbjerg, D.; Arnbjerg-Nielsen, K. A spatial and nonstationary model for the frequency of extreme rainfall events. Water Resour. Res. 2013, 49, 127–136. [Google Scholar] [CrossRef]
- Sadegh, M.; Vrugt, J.A.; Xu, C.; Volpi, E. The stationarity paradigm revisited: Hypothesis testing using diagnostics, summary metrics, and DREAM (ABC). Water Resour. Res. 2015, 51, 9207–9231. [Google Scholar] [CrossRef]
- Yan, L.; Xiong, L.; Ruan, G.; Zhang, M.; Xu, C.-Y. Design flood estimation with varying record lengths in Norway under stationarity and nonstationarity scenarios. Hydrol. Res. 2021, 52, 1596–1614. [Google Scholar] [CrossRef]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Coles, S.; Bawa, J.; Trenner, L.; Dorazio, P. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Cooley, D. Return periods and return levels under climate change. In Extremes in a Changing Climate: Detection, Analysis and Uncertainty; Springer: Dordrecht, The Netherlands, 2012; pp. 97–114. [Google Scholar]
- Hamdi, Y.; Duluc, C.-M.; Rebour, V. Temperature extremes: Estimation of non-stationary return levels and associated uncertainties. Atmosphere 2018, 9, 129. [Google Scholar] [CrossRef]
- Ragno, E.; AghaKouchak, A.; Cheng, L.; Sadegh, M. A generalized framework for process-informed nonstationary extreme value analysis. Adv. Water Resour. 2019, 130, 270–282. [Google Scholar] [CrossRef]
- Salas, J.D.; Obeysekera, J. Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. J. Hydrol. Eng. 2014, 19, 554–568. [Google Scholar] [CrossRef]
- Olsen, J.R.; Lambert, J.H.; Haimes, Y.Y. Risk of extreme events under nonstationary conditions. Risk Anal. 1998, 18, 497–510. [Google Scholar] [CrossRef]
- Wigley, T.M.L. The effect of changing climate on the frequency of absolute extreme events. Clim. Change 2009, 97, 67–76. [Google Scholar] [CrossRef]
- Porporato, A.; Ridolfi, L. Influence of weak trends on exceedance probability. Stoch. Hydrol. Hydraul. 1998, 12, 1–14. [Google Scholar] [CrossRef]
- Ganguli, P.; Coulibaly, P. Does nonstationarity in rainfall require nonstationary intensity–duration–frequency curves? Hydrol. Earth Syst. Sci. 2017, 21, 6461–6483. [Google Scholar] [CrossRef]
- Asakereh, H.; Shahbaee Kotenaee, A. Analysis of the Temporal-Spatial Trend of Frequency of Daily Extremes Precipitation in Iran. JWSS-Isfahan Univ. Technol. 2023, 27, 209–222. [Google Scholar]
- Masoudian, A.; Darand, M. Identifying and investigating changes of Iran’s extremes rainfall indexes in recent decades. J. Geogr. Reg. Dev. 2013, 11, 239–257. [Google Scholar]
- Darand, M.; Sohrabi, M.M. Identifying drought-and flood-prone areas based on significant changes in daily precipitation over Iran. Nat. Hazards 2018, 90, 1427–1446. [Google Scholar] [CrossRef]
- Asakereh, H. Spatio–temporal changes of Iran inland precipitation during recent decades. Geogr. Dev. 2007, 5, 145–164. [Google Scholar]
- Asakereh, H.; Ashrafi, S. An investigation into trends in frequency and proportion of different durations of various types of extreme precipitation in Iran. Meteorol. Appl. 2023, 30, e2117. [Google Scholar] [CrossRef]
- Sari Sarraf, B.; Asakereh, H. The study of temporal-spatial changes of high extreme rainfalls in west of Iran (1965–2016). J. Spat. Anal. Environ. hazarts 2020, 7, 89–106. [Google Scholar]
- Nazaripour, H.; Sedaghat, M.; Sadeghinia, A. Observed changes in the contribution of extreme precipitation over the Zagros Mountains, Iran. Idöjárás 2024, 128, 367–377. [Google Scholar] [CrossRef]
- Darand, M.; Pazhoh, F. Spatiotemporal analysis of precipitation variability based on entropy over Iran. J. Water Clim. Change 2024, 15, 1018–1033. [Google Scholar] [CrossRef]
- Asakereh, H. Frequency distribution change of extreme precipitation in Zanjan City. Geogr. Environ. Plan. J. 2012, 45, 13–17. [Google Scholar]
- Fakour, P.; Ustrnul, Z. Long-Term Trends in Extreme Precipitation Events in Northwest Iran: A Comprehensive Analysis Using ERA5 Reanalysis Data. In Proceedings of the EMS Annual Meeting 2024, Barcelona, Spain, 1–6 September 2024. [Google Scholar]
- Raziei, T.; Daryabari, J.; Bordi, I.; Modarres, R.; Pereira, L.S. Spatial patterns and temporal trends of daily precipitation indices in Iran. Clim. Change 2014, 124, 239–253. [Google Scholar] [CrossRef]
- Asgari, A.; Rahimzadeh, F.; Mohammadian, N.; Fattahi, E. Trend analysis of extreme precipitation indices over Iran. Iran-Water Resour. Res. 2007, 3, 42–55. [Google Scholar]
- Ghayur, H.; Masoudiyan, S.A. An spatial analysis of elevation–precipitation models (Case study: Iran). Geogr. Res. 1996, 41, 124–143. [Google Scholar]
- Asakereh, H.; Masoodian, S.A.; Tarkarani, F. Long term trend detection of annual precipitation over Iran in relation with changes in frequency of daily extremes precipitation. J. Geogr. Environ. Hazards 2021, 9, 123–143. [Google Scholar]
- Salahi, B.; Kashani, A.; Safarianzengir, V. Investigation and analysis of climate change and siberian high-pressure system during drought and wet periods in the Iranian plateau. Model. Earth Syst. Environ. 2020, 6, 1695–1706. [Google Scholar] [CrossRef]
- Hejazizadeh, Z.; Nejad, M.T.; Doree, A.K.; Dolatshahi, Z. Patterning the persistence of pervasive precipitation in the western Iran. Arab. J. Geosci. 2021, 14, 2102. [Google Scholar] [CrossRef]
- Mohammadi, F.; Lashkari, H. Determination of long-term changes in the rainfall penetration domain of Sudan low in Iran during the period 1976–2017. J. Atmos. Sol.-Terr. Phys. 2020, 203, 105276. [Google Scholar] [CrossRef]
Station | Model | RMSE | NSE | AIC | Station | Model | RMSE | NSE | AIC |
---|---|---|---|---|---|---|---|---|---|
Abadan | M0 | 3.09 | 0.92 | 496.3 | Khoramabad | M0 | 1.7 | 0.97 | 513.4 |
M1 | 2.1 | 0.95 | 496.4 | M1 | 1.9 | 0.96 | 510.7 | ||
Ahvaz | M0 | 1.4 | 0.97 | 522.4 | Mashhad | M0 | 1.05 | 0.98 | 454.3 |
M1 | 1.2 | 0.99 | 526 | M1 | 1.01 | 0.98 | 458.3 | ||
Arak | M0 | 1.2 | 0.98 | 501.7 | Orumiyeh | M0 | 1.05 | 0.98 | 472.5 |
M1 | 1.3 | 0.98 | 504.7 | M1 | 0.97 | 0.98 | 476.5 | ||
Anzali | M0 | 1.4 | 0.97 | 612.1 | Ramsar | M0 | 1.2 | 0.98 | 679.3 |
M1 | 1.4 | 0.97 | 609.1 | M1 | 2.2 | 0.95 | 682 | ||
Babolsar | M0 | 1.6 | 0.97 | 600.7 | Rasht | M0 | 0.97 | 0.99 | 578.4 |
M1 | 1.1 | 0.98 | 603.2 | M1 | 1.1 | 0.98 | 579.7 | ||
Bam | M0 | 1.5 | 0.97 | 413.9 | Sabzevar | M0 | 1.5 | 0.97 | 430.7 |
M1 | 0.99 | 0.99 | 416.9 | M1 | 1.8 | 0.97 | 433.2 | ||
Birjand | M0 | 1.2 | 0.98 | 424.4 | Sanandaj | M0 | 1.04 | 0.98 | 475.8 |
M1 | 1.5 | 0.98 | 427.3 | M1 | 1.2 | 0.98 | 477.9 | ||
Bandarabbas | M0 | 2.1 | 0.96 | 584.2 | Shahrekord | M0 | 1.5 | 0.97 | 496.7 |
M1 | 1.9 | 0.96 | 589.3 | M1 | 1.4 | 0.97 | 498.8 | ||
Bushehr | M0 | 2.9 | 0.92 | 574 | Shahrud | M0 | 1.3 | 0.98 | 451.2 |
M1 | 2.8 | 0.92 | 575.1 | M1 | 1.5 | 0.97 | 454.06 | ||
Dezful | M0 | 1.2 | 0.98 | 563.1 | Shiraz | M0 | 1.3 | 0.98 | 507.1 |
M1 | 1.3 | 0.98 | 566.2 | M1 | 1.1 | 0.98 | 511.6 | ||
Esfahan | M0 | 1.6 | 0.97 | 449.5 | Semnan | M0 | 1.4 | 0.97 | 425 |
M1 | 1.2 | 0.98 | 449.3 | M1 | 1.6 | 0.98 | 428.3 | ||
Ghazvin | M0 | 0.99 | 0.98 | 433.4 | Tabriz | M0 | 2.2 | 0.95 | 431.8 |
M1 | 0.98 | 0.98 | 436.8 | M1 | 2.1 | 0.95 | 433.8 | ||
Gorgan | M0 | 1.7 | 0.97 | 510.6 | Tehran | M0 | 1.6 | 0.97 | 445.2 |
M1 | 1.6 | 0.97 | 513.2 | M1 | 1.4 | 0.97 | 446.6 | ||
Hamedan | M0 | 2.7 | 0.93 | 468.1 | Torbat | M0 | 0.98 | 0.99 | 446.9 |
M1 | 3.2 | 0.91 | 469.8 | M1 | 1.4 | 0.97 | 446.8 | ||
Iranshahr | M0 | 1.4 | 0.97 | 481.9 | Yazd | M0 | 1.5 | 0.97 | 415.4 |
M1 | 1.4 | 0.97 | 484.6 | M1 | 1.4 | 0.98 | 417.9 | ||
Kerman | M0 | 3.4 | 0.89 | 498.4 | Zahedan | M0 | 1.3 | 0.98 | 414.5 |
M1 | 2.3 | 0.93 | 491 | M1 | 0.8 | 0.99 | 414.6 | ||
Khoy | M0 | 1.4 | 0.98 | 451.2 | Zabol | M0 | 1.2 | 0.98 | 440.8 |
M1 | 1.6 | 0.97 | 454.3 | M1 | 1.3 | 0.98 | 437.8 | ||
Kermanshah | M0 | 1.5 | 0.97 | 471.9 | Zanjan | M0 | 1.5 | 0.97 | 437.8 |
M1 | 0.94 | 0.99 | 474.7 | M1 | 1.7 | 0.96 | 439.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razi Ghalavand, M.; Farajzadeh, M.; Ghavidel Rahimi, Y. Modeling Return Levels of Non-Stationary Rainfall Extremes Due to Climate Change. Atmosphere 2025, 16, 136. https://doi.org/10.3390/atmos16020136
Razi Ghalavand M, Farajzadeh M, Ghavidel Rahimi Y. Modeling Return Levels of Non-Stationary Rainfall Extremes Due to Climate Change. Atmosphere. 2025; 16(2):136. https://doi.org/10.3390/atmos16020136
Chicago/Turabian StyleRazi Ghalavand, Mahin, Manuchehr Farajzadeh, and Yousef Ghavidel Rahimi. 2025. "Modeling Return Levels of Non-Stationary Rainfall Extremes Due to Climate Change" Atmosphere 16, no. 2: 136. https://doi.org/10.3390/atmos16020136
APA StyleRazi Ghalavand, M., Farajzadeh, M., & Ghavidel Rahimi, Y. (2025). Modeling Return Levels of Non-Stationary Rainfall Extremes Due to Climate Change. Atmosphere, 16(2), 136. https://doi.org/10.3390/atmos16020136