Advances in Rainfall-Induced Hazard Research

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Meteorology".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 6319

Special Issue Editors

Key Laboratory of VGE of Ministry of Education, Nanjing Normal University, Nanjing 210023, China
Interests: urban hydrology; radar hydrology; precipitation remote sensing; multi-hazards; weather forecasting; geographical information science
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Interests: spatio-temporal data modelling; social computing; urban hydrology; flood exposure and vulnerability assessment
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The current state of research on rainfall-induced hazards is rapidly evolving, with significant advancements in understanding and mitigation strategies. Remote sensing and geospatial technologies have revolutionized our ability to monitor and predict rainfall patterns, while numerical modeling techniques are increasingly sophisticated in assessing the potential impact of excessive rainfall on hillslopes, watersheds, and urban areas. Moreover, the integration of traditional atmospheric and natural hazard knowledge with modern data science and machine learning has led to more accurate predictions, enabling authorities to take timely measures.

This Special Issue brings together leading experts to share their insights and research findings, covering topics from rainfall modeling and forecasting to risk assessment and management. It serves as a valuable resource for researchers, policymakers, and practitioners, fostering cross-disciplinary collaboration and further advancements in this crucial field.

We hope this issue inspires more research into mitigating the impact of these natural hazards and safeguarding lives and property worldwide.

Dr. Qiang Dai
Dr. Shaonan Zhu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • rainfall-triggered hazards
  • extreme rainfall events
  • flood modeling
  • landslide prediction
  • hydrological processes
  • slope stability analysis
  • disaster prevention measures

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 15800 KiB  
Article
A Reanalysis Precipitation Integration Method Utilizing the Generalized Three-Cornered Hat Approach and High-Resolution, Gauge-Based Datasets
by Lilan Zhang, Xiaohong Chen, Bensheng Huang, Jie Liu, Daoyi Chen, Liangxiong Chen, Rouyi Lai and Yanhui Zheng
Atmosphere 2024, 15(11), 1390; https://doi.org/10.3390/atmos15111390 - 18 Nov 2024
Viewed by 379
Abstract
The development of high-precision, long-term, hourly-scale precipitation data is essential for understanding extreme precipitation events. Reanalysis systems are particularly promising for this type of research due to their long-term observations and wide spatial coverage. This study aims to construct a more robust precipitation [...] Read more.
The development of high-precision, long-term, hourly-scale precipitation data is essential for understanding extreme precipitation events. Reanalysis systems are particularly promising for this type of research due to their long-term observations and wide spatial coverage. This study aims to construct a more robust precipitation dataset by integrating three widely-used reanalysis precipitation estimates: Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA2), Climate Forecast System Reanalysis (CFSR), and European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5). A novel integration method based on the generalized three-cornered hat (TCH) approach is employed to quantify uncertainties in these products. To enhance accuracy, the high-density daily precipitation data from the Asian Precipitation-Highly-Resolved Observation Data Integration Towards Evaluation (APHRODITE) dataset is used for correction. Results show that the TCH method effectively identifies seasonal and spatial uncertainties across the products. The TCH-weighted product (TW), calculated using signal-to-noise ratio weighting, outperforms the original reanalysis datasets across various watersheds and seasons. After correction with APHRODITE data, the enhanced integrated product (ATW) significantly improves accuracy, making it more suitable for extreme precipitation event analysis. Quantile mapping was applied to assess the ability of TW and ATW to represent extreme precipitation. Both products showed improved accuracy in regional average precipitation, with ATW demonstrating superior improvement. This integration method provides a robust approach for refining reanalysis precipitation datasets, contributing to more reliable hydrological and climate studies. Full article
(This article belongs to the Special Issue Advances in Rainfall-Induced Hazard Research)
Show Figures

Figure 1

23 pages, 12411 KiB  
Article
Does ERA5-Land Effectively Capture Extreme Precipitation in the Yellow River Basin?
by Chunrui Guo, Ning Ning, Hao Guo, Yunfei Tian, Anming Bao and Philippe De Maeyer
Atmosphere 2024, 15(10), 1254; https://doi.org/10.3390/atmos15101254 - 21 Oct 2024
Viewed by 634
Abstract
ERA5-Land is a valuable reanalysis data resource that provides near-real-time, high-resolution, multivariable data for various applications. Using daily precipitation data from 301 meteorological stations in the Yellow River Basin from 2001 to 2013 as benchmark data, this study aims to evaluate ERA5-Land’s capability [...] Read more.
ERA5-Land is a valuable reanalysis data resource that provides near-real-time, high-resolution, multivariable data for various applications. Using daily precipitation data from 301 meteorological stations in the Yellow River Basin from 2001 to 2013 as benchmark data, this study aims to evaluate ERA5-Land’s capability of monitoring extreme precipitation. The evaluation study is conducted from three perspectives: precipitation amount, extreme precipitation indices, and characteristics of extreme precipitation events. The results show that ERA5-Land can effectively capture the spatial distribution patterns and temporal trends in precipitation and extreme precipitation; however, it also exhibits significant overestimation and underestimation errors. ERA5-Land significantly overestimates total precipitation and indices for heavy precipitation and extreme precipitation (R95pTOT and R99pTOT), with errors reaching up to 89%, but underestimates the Simple Daily Intensity Index (SDII). ERA5-Land tends to overestimate the duration of extreme precipitation events but slightly underestimates the total and average precipitation of these events. These findings provide a scientific reference for optimizing the ERA5-Land algorithm and for users in selecting data. Full article
(This article belongs to the Special Issue Advances in Rainfall-Induced Hazard Research)
Show Figures

Figure 1

21 pages, 7364 KiB  
Article
Deriving Tropical Cyclone-Associated Flood Hazard Information Using Clustered GPM-IMERG Rainfall Signatures: Case Study in Dominica
by Catherine Nabukulu, Victor G. Jetten, Janneke Ettema, Bastian van den Bout and Reindert J. Haarsma
Atmosphere 2024, 15(9), 1042; https://doi.org/10.3390/atmos15091042 - 29 Aug 2024
Viewed by 1034
Abstract
Various stakeholders seek effective methods to communicate the potential impacts of tropical cyclone (TC) rainfall and subsequent flood hazards. While current methods, such as Intensity–Duration–Frequency curves, offer insights, they do not fully capture TC rainfall complexity and variability. This research introduces an innovative [...] Read more.
Various stakeholders seek effective methods to communicate the potential impacts of tropical cyclone (TC) rainfall and subsequent flood hazards. While current methods, such as Intensity–Duration–Frequency curves, offer insights, they do not fully capture TC rainfall complexity and variability. This research introduces an innovative workflow utilizing GPM-IMERG satellite precipitation estimates to cluster TC rainfall spatial–temporal patterns, thereby illustrating their potential for flood hazard assessment by simulating associated flood responses. The methodology is tested using rainfall time series from a single TC as it traversed a 500 km diameter buffer zone around Dominica. Spatial partitional clustering with K-means identified the spatial clusters of rainfall time series with similar temporal patterns. The optimal value of K = 4 was most suitable for grouping the rainfall time series of the tested TC. Representative precipitation signals (RPSs) from the quantile analysis generalized the cluster temporal patterns. RPSs served as the rainfall input for the openLISEM, an event-based hydrological model simulating related flood characteristics. The tested TC exhibited three spatially distinct levels of rainfall magnitude, i.e., extreme, intermediate, and least intense, each resulting in different flood responses. Therefore, TC rainfall varies in space and time, affecting local flood hazards; flood assessments should incorporate variability to improve response and recovery. Full article
(This article belongs to the Special Issue Advances in Rainfall-Induced Hazard Research)
Show Figures

Figure 1

16 pages, 3527 KiB  
Article
Comparative Study οf the Frequencies οf Atmospheric Circulation Types at Different Geopotential Levels and Their Relationship with Precipitation in Southern Romania
by Konstantia Tolika, Christina Anagnostopoulou, Myriam Traboulsi, Liliana Zaharia, Dana Maria (Oprea) Constantin, Ioannis Tegoulias and Panagiotis Maheras
Atmosphere 2024, 15(9), 1027; https://doi.org/10.3390/atmos15091027 - 24 Aug 2024
Viewed by 581
Abstract
The primary aim of this study is to examine the characteristics of atmospheric circulation patterns at various geopotential levels and their relationship with precipitation in southern Romania during the period from 1961 to 2020. Daily geopotential heights (1000 hPa, 850 hPa, 700 hPa [...] Read more.
The primary aim of this study is to examine the characteristics of atmospheric circulation patterns at various geopotential levels and their relationship with precipitation in southern Romania during the period from 1961 to 2020. Daily geopotential heights (1000 hPa, 850 hPa, 700 hPa and 500 hPa) were utilized in an automatic updated atmospheric circulation scheme for the creation of daily calendars of 12 circulation types (5 anticyclonic and 7 cyclonic) as well as daily time series derived from five stations over the domain of interest. To assess the influence of the atmospheric circulation on precipitation, correlations and time trends were explored between the rainfall totals and the different circulation types. The findings reveal a rising trend in anticyclonic circulation types across the region, while cyclonic types exhibit a consisted decrease. Precipitation and number of rain days percentages associated with specific cyclonic types depend on the geopotential levels, while annual and seasonal precipitation linked to cyclonic types decreases progressively from higher to lower levels. The strongest correlations in circulation type frequencies are observed between adjacent circulation types. Taylor diagram analysis indicates that the relationships between circulation types and precipitation vary both seasonally and across different atmospheric levels. Notably, the two rainiest circulation types are more accurately simulated at higher atmospheric levels (700 hPa and 500 hPa). Full article
(This article belongs to the Special Issue Advances in Rainfall-Induced Hazard Research)
Show Figures

Figure 1

19 pages, 15166 KiB  
Article
Ensemble Predictions of Rainfall-Induced Landslide Risk under Climate Change in China Integrating Antecedent Soil-Wetness Factors
by Han Zong, Qiang Dai and Jingxuan Zhu
Atmosphere 2024, 15(8), 1013; https://doi.org/10.3390/atmos15081013 - 21 Aug 2024
Viewed by 608
Abstract
Global warming has increased the occurrence of extreme weather events, causing significant economic losses and casualties from rainfall-induced landslides. China, being highly prone to landslides, requires comprehensive predictions of future rainfall-induced landslide risks. By developing a landslide-prediction model integrated with the CMIP6 GCMs [...] Read more.
Global warming has increased the occurrence of extreme weather events, causing significant economic losses and casualties from rainfall-induced landslides. China, being highly prone to landslides, requires comprehensive predictions of future rainfall-induced landslide risks. By developing a landslide-prediction model integrated with the CMIP6 GCMs ensemble, we predict the spatiotemporal distribution of future rainfall-induced landslides in China, incorporating antecedent soil-wetness factors. In this study, antecedent soil wetness is represented by the antecedent effective rainfall index (ARI), which accounts for cumulative rainfall, evaporation, and runoff losses. Firstly, we calculated landslide susceptibility using seven geographic factors, such as slope and geology. Then, we constructed landslide threshold models with two antecedent soil-wetness indicators. Compared to the traditional recent cumulative rainfall thresholds, the landslide threshold model based on ARI demonstrated higher hit rates and lower false alarm rates. Ensemble predictions indicate that in the early 21st century, the risk of landslides decreases in the Qinghai–Tibet Plateau, Southwest, and Southeast regions but increases in other regions. Mid-century projections show a 10% to 40% increase in landslide risk across most regions. By the end of the century, the risk is expected to rise by more than 15% nationwide, displaying a spatial distribution pattern that intensifies from east to west. Full article
(This article belongs to the Special Issue Advances in Rainfall-Induced Hazard Research)
Show Figures

Figure 1

18 pages, 10242 KiB  
Article
Comparative Analysis of Two Tornado Processes in Southern Jiangsu
by Yang Li, Shuya Cao, Xiaohua Wang and Lei Wang
Atmosphere 2024, 15(8), 1010; https://doi.org/10.3390/atmos15081010 - 21 Aug 2024
Viewed by 642
Abstract
Jiangsu is a province in China and has the highest frequency of tornado occurrences. Studying the meteorological background and mechanisms of tornado formation is crucial for predicting tornado events and preventing the resulting disasters. This paper analyzed the meteorological background, instability mechanisms, and [...] Read more.
Jiangsu is a province in China and has the highest frequency of tornado occurrences. Studying the meteorological background and mechanisms of tornado formation is crucial for predicting tornado events and preventing the resulting disasters. This paper analyzed the meteorological background, instability mechanisms, and lifting conditions of the two Enhanced Fujita Scale level 2 (EF2) and above tornadoes that occurred in southern Jiangsu on 14 May 2021 (“5.14”) and 6 July 2020 (“7.06”) using ERA5 reanalysis data. Detailed analyses of the internal structure of tornado storms were conducted using Changzhou and Qingpu radar data. The results showed that (1) both tornadoes occurred in warm and moist areas ahead of upper-level troughs with significant dry air transport following the cold troughs. The continuous strengthening of low-level warm and moist advection was crucial in maintaining potential instability and triggering tornado vortices. The 14 May tornado formed within a low-level shear line and a warm area of a surface trough, while the 6 July tornado occurred at the end of a low-level jet stream, north of the eastern section of a quasi-stationary front. (2) The convective available potential energy (CAPE) and K indices for both tornado processes were very close (391 for “5.14” and 378 for “7.06”), with the lifting condensation level (LCL) near the ground. The “5.14” showed greater instability and more favorable thermodynamic conditions, with deep southwesterly jets at the mid-level shear line producing rotation under strong convergent action (convergence center value exceeding −1 × 104s1). In contrast, the “7.06” was driven by super-low-level jet stream pulsations and wind direction convergence under the influence of the Meiyu Front (convergence center value exceeding −1.5 × 104 s1), resulting in intense lifting and vertical vorticity triggered by a surface convergence line. (3) The “5.14” tornado process involved a supercell storm over a surface dry line experiencing tilting due to strong vertical wind shear, which led to the formation of smaller cyclonic vortices near a hook echo that developed into a tornado. The “7.06” developed on a bow echo structure within a mesoscale convective system formed over the Meiyu Front, where dry air subsidence, entrainment, and convergence of the southeast jet stream triggered a “miniature” supercell. The relevant research results provide a reference for the prediction and early warning of tornadoes. Full article
(This article belongs to the Special Issue Advances in Rainfall-Induced Hazard Research)
Show Figures

Figure 1

12 pages, 4397 KiB  
Article
Analysis of Precipitable Water Vapor, Liquid Water Path and Their Variations before Rainfall Event over Northeastern Tibetan Plateau
by Mingxing Xue, Qiong Li, Zhen Qiao, Xiaomei Zhu and Suonam Kealdrup Tysa
Atmosphere 2024, 15(8), 934; https://doi.org/10.3390/atmos15080934 - 4 Aug 2024
Viewed by 968
Abstract
A ground-based microwave radiometer (MWR) provides continuous atmospheric profiles under various weather conditions. The change in total precipitable water vapor (PWV) and liquid water path (LWP) before rainfall events is particularly important for the improvement in the rainfall forecast. However, the analysis of [...] Read more.
A ground-based microwave radiometer (MWR) provides continuous atmospheric profiles under various weather conditions. The change in total precipitable water vapor (PWV) and liquid water path (LWP) before rainfall events is particularly important for the improvement in the rainfall forecast. However, the analysis of the PWV and LWP before rainfall event on the plateau is especially worth exploring. In this study, the MWR installed at Xining, a city located over the northeastern Tibetan Plateau, was employed during September 2021 to August 2022. The results reveal that the MWR-retrieved temperature and vapor density demonstrate reliable accuracy, when compared with radiosonde observations; PWV and LWP values during the summer account for over 70% of the annual totals in the Xining area; both PWV and LWP at the initiating time of rainfall events are higher during summer, especially after sunset (during 20-00 local solar time); and notably, PWV and LWP anomalies are enhanced abruptly 8 and 28 min prior to the initiating time, respectively. Furthermore, the mean of LWP anomaly rises after the turning time (the moment rises abruptly) to the initiating time; as the intensity of rainfall events increases, the occurrence of the turning time is delayed, especially for PWV anomalies; while the occurrence of the turning time is similar for both convective cloud and stratiform cloud rainfall events, the PWV and LWP anomalies jump more the initiating time; as the intensity of rainfall events increases, the occurrence of the turning time is delayed, especially for PWV anomalies; while the occurrence of the turning time is similar for both convective cloud and stratiform cloud rainfall events, the PWV and LWP anomalies jump more dramatically after the turning time in convective cloud events. This study aims are to analyze the temporal characteristics of PWV and LWP, and assess their potential in predicting rainfall event. Full article
(This article belongs to the Special Issue Advances in Rainfall-Induced Hazard Research)
Show Figures

Figure 1

17 pages, 8480 KiB  
Article
Characteristics of Atmospheric Diabatic Heating of the Southwest China Vortex That Induces Extreme Rainstorms in Sichuan
by Chunhua Zhou and Yueqing Li
Atmosphere 2024, 15(7), 861; https://doi.org/10.3390/atmos15070861 - 21 Jul 2024
Viewed by 638
Abstract
In this study, we aimed to demonstrate the importance of diabatic heating in extreme rainstorm weather events induced by the Southwest China vortex (SWCV) in different precipitation regions with a similar circulation background. The results showed that atmospheric diabatic heating had indicative significance [...] Read more.
In this study, we aimed to demonstrate the importance of diabatic heating in extreme rainstorm weather events induced by the Southwest China vortex (SWCV) in different precipitation regions with a similar circulation background. The results showed that atmospheric diabatic heating had indicative significance for the intensity evolution of the SWCV and the precipitation area. Changes in the diabatic heating intensity preceded the intensity evolution of the SWCV, and the diabatic heating region was consistent with the heavy precipitation region. The variation in diabatic heating was mainly due to the positive contribution of its vertical transport term. The two types of spatially non-uniform heating effects were similar; however, the western type was located southeast of the SWCV, with an asymmetric distribution on the southeastern and northwestern sides. The eastern type was located in the northeast of the SWCV, with an asymmetric distribution on the northeastern and southwestern sides. The vertically non-uniform heating effect played a decisive role in the distribution and evolution of the spatially non-uniform heating terms. The vertically non-uniform heating effect affected the intensity evolution of the SWCV. In contrast, the horizontally non-uniform heating effect, in opposition to the vertically non-uniform heating effect, had a slightly weaker intensity than the vertically non-uniform heating effect. For the SWCV system, which induces extreme rainstorms, the magnitude of the horizontally non-uniform heating effect could reach that of vertically non-uniform heating; thus, the possible impact of horizontally non-uniform heating should be considered. Full article
(This article belongs to the Special Issue Advances in Rainfall-Induced Hazard Research)
Show Figures

Figure 1

Back to TopTop