Non-Negligible Factors Influence Tree-Ring-Based Temperature Reconstruction and Comparison over Mid-Latitude China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Characteristics
2.2. Tree-Ring Data and Chronology Development
2.3. Climate Data and Data Analysis
3. Results
3.1. Statistics of the Chronologies
3.2. Climate-Growth Response
3.3. May–July Mean Maximum Temperature Reconstructions
3.4. Reconstructed Series Characteristics
4. Discussion and Conclusions
4.1. Climate–Radial Tree Growth Relationships
4.2. Spatial–Temporal Representativeness of the Reconstructions
4.3. Possible Factors Influencing Tree-Ring-Based Temperature Reconstruction and Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AR6 Synthesis Report: Climate Change 2023—IPCC. Available online: https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (accessed on 24 November 2024).
- Panin, G.N.; Solomonova, I.V.; Vyruchalkina, T.Y. Climatic Trends in the Middle and High Latitudes of the Northern Hemisphere. Water Resour. 2009, 36, 718–730. [Google Scholar] [CrossRef]
- Jones, P.D.; Briffa, K.R. Global Surface Air Temperature Variations During the Twentieth Century: Part 1, Spatial, Temporal and Seasonal Details. Holocene 1992, 2, 165–179. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Karl, T.R.; Kukla, G.; Razuvayev, V.N.; Changery, M.J.; Quayle, R.G.; Heim, R.R., Jr.; Easterling, D.R.; Fu, C.B. Global Warming: Evidence for Asymmetric Diurnal Temperature Change. Geophys. Res. Lett. 1991, 18, 2253–2256. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Photiadou, C.; Jones, M.R.; Keellings, D.; Dewes, C.F. Modeling European Hot Spells Using Extreme Value Analysis. Clim. Res. 2014, 58, 193–207. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, W.; Li, Y.; Wang, X.; Wang, D. Statistical Modeling and CMIP5 Simulations of Hot Spell Changes in China. Clim. Dyn. 2015, 44, 2859–2872. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Li, Z.; Guo, B.; Wang, X. A 368-Year Maximum Temperature Reconstruction Based on Tree-Ring Data in the Northwestern Sichuan Plateau (NWSP), China. Clim. Past 2016, 12, 1485–1498. [Google Scholar] [CrossRef]
- Shi, Y.; Fan, J. Glimatic Warming and Drying Trend and Its Impact on Water Resources in Mid Latitude China. Adv. Water Sci. 1991, 2, 217–223. [Google Scholar]
- Douville, H.; Colin, J.; Krug, E.; Cattiaux, J.; Thao, S. Midlatitude Daily Summer Temperatures Reshaped by Soil Moisture under Climate Change. Geophys. Res. Lett. 2016, 43, 812–818. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Z.; Xu, B. Modulation of Monthly Precipitation Patterns over East China by the Pacific Decadal Oscillation. Clim. Change 2017, 144, 405–417. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Z.; Wu, P.; Klingaman, N.P.; Zhang, L. Interdecadal Seesaw of Precipitation Variability between North China and the Southwest United States. J. Clim. 2019, 32, 2951–2968. [Google Scholar] [CrossRef]
- Wilson, R.J.S.; Luckman, B.H. Tree-Ring Reconstruction of Maximum and Minimum Temperatures and the Diurnal Temperature Range in British Columbia, Canada. Dendrochronologia 2002, 20, 257–268. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Li, Q.; Sun, J.; Song, H.; Cai, Q.; Zhang, Y.; Yuan, Z.; Wang, Z. Reconstructed May–July Mean Maximum Temperature since 1745AD Based on Tree-Ring Width of Pinus Tabulaeformis in Qianshan Mountain, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 388, 145–152. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, L.; Chen, J.; Duan, J. Reconstructing Mean Maximum Temperatures of May–August from Tree-Ring Maximum Density in North Da Hinggan Mountains, China. Chin. Sci. Bull. 2012, 57, 2007–2014. [Google Scholar] [CrossRef]
- Tian, Q.; Liu, Y.; Cai, Q.; Bao, G.; Wang, W.; Xue, W.; Zhu, W.; Song, H.; Lei, Y. The maximum temperature of May–July inferred from tree-ring in Funiu Mountain since 1874 AD. Acta Geogr. Sin. 2009, 64, 879–887. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Zhu, H.; Wu, P. Reconstructing Mean Maximum Temperature of Growing Season from the Maximum Density of the Schrenk Spruce in Yili, Xinjiang, China. Chin. Sci. Bull. 2009, 54, 2300–2308. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, Q.-B.; Lv, L.; Zhang, C. Regional-Scale Winter-Spring Temperature Variability and Chilling Damage Dynamics over the Past Two Centuries in Southeastern China. Clim. Dyn. 2012, 39, 919–928. [Google Scholar] [CrossRef]
- Li, J.; Shao, X.; Li, Y.; Qin, N.; Yang, T. The Relationship between Early Summer Air Temperature and the Global Sea Surface Temperature in the North of Western Sichuan Plateau from 1854 to 2010. J. Desert Res. 2015, 35, 1024–1035. [Google Scholar]
- Keyimu, M.; Li, Z.; Liu, G.; Fu, B.; Fan, Z.; Wang, X.; Wu, X.; Zhang, Y.; Halik, U. Tree-Ring Based Minimum Temperature Reconstruction on the Southeastern Tibetan Plateau. Quat. Sci. Rev. 2021, 251, 106712. [Google Scholar] [CrossRef]
- Liu, Y.U.; Linderholm, H.W.; Song, H.; Cai, Q.; Tian, Q.; Sun, J.; Chen, D.; Simelton, E.; Seftigen, K.; Tian, H.U.A. Temperature Variations Recorded in Pinus Tabulaeformis Tree Rings from the Southern and Northern Slopes of the Central Qinling Mountains, Central China. Boreas 2009, 38, 285–291. [Google Scholar] [CrossRef]
- Tian, Q.; Helama, S.; Zhao, P. Temperature Variability Inferred from Tree Rings of Qinling Region in North-Central China. In Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, Xi’an, China, 20–22 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2072–2075. [Google Scholar]
- Zheng, Z.; Jin, L.; Li, J.; Chen, J.; Zhang, X.; Wang, Z. Moisture Variation Inferred from Tree Rings in North Central China and Its Links with the Remote Oceans. Sci. Rep. 2021, 11, 16463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Zheng, Z.; Zeng, S. A 479-Year Early Summer Temperature Reconstruction Based on Tree-Ring in the Southeastern Tibetan Plateau, China. Atmosphere 2021, 12, 1251. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Y.; Ge, Q.; Dai, J.; Chen, Q. Reponses and Sensitivities of Maize Phenology to Climate Change from 1981 to 2009 in Henan Province, China. J. Geogr. Sci. 2017, 27, 1072–1084. [Google Scholar] [CrossRef]
- Song, H.; Liu, Y.; Li, Q.; Gao, N.; Ma, Y.; Zhang, Y. Tree-Ring Based May–July Temperature Reconstruction since AD 1630 on the Western Loess Plateau, China. PLoS ONE 2014, 9, e93504. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.R.; Kairiukstis, L.A. Methods of Dendrochronology: Applications in the Environmental Sciences; Springer Science & Business Media: Berlin, Germany, 2013; ISBN 978-94-015-7879-0. [Google Scholar]
- Stokes, M.A. An Introduction to Tree-Ring Dating; University of Arizona Press: Tucson, AZ, USA, 1996; ISBN 978-0-8165-1680-3. [Google Scholar]
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree Ring Bull. 1983, 43, 51–67. [Google Scholar]
- Cook, E.R. A Time Series Analysis Approach to Tree Ring Standardization (Dendrochronology, Forestry, Dendroclimatology, Autoregressive Process). Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 1985. [Google Scholar]
- Zheng, Z.; Jin, L.; Li, J.; Chen, J.; Zhang, X.; Wang, Z. Influence of May–June Frontal Precipitation on Coherent Moisture Pattern in East-Central China since 1793 Based on Tree-Ring Data. Quat. Int. 2022, 607, 79–88. [Google Scholar] [CrossRef]
- Wigley, T.M.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset|Scientific Data. Available online: https://www.nature.com/articles/s41597-020-0453-3 (accessed on 26 July 2023).
- Fritts, H. Tree Rings and Climate; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 978-0-323-14528-2. [Google Scholar]
- Meko, D.; Graybill, D.A. Tree-Ring reconstruction of upper gila rwer discharge. JAWRA J. Am. Water Resour. Assoc. 1995, 31, 605–616. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis: A Beginner’s Guide—I. Introduction and Application. Weather 1990, 45, 375–382. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; U.S. Department of Commerce, Weather Bureau: Silver Spring, MD, USA, 1965. [Google Scholar]
- Li, J.; Cook, E.R.; D’arrigo, R.; Chen, F.; Gou, X. Moisture Variability across China and Mongolia: 1951–2005. Clim. Dyn. 2009, 32, 1173–1186. [Google Scholar] [CrossRef]
- Van Der Schrier, G.; Barichivich, J.; Briffa, K.R.; Jones, P.D. A scPDSI-based Global Data Set of Dry and Wet Spells for 1901–2009. JGR Atmos. 2013, 118, 4025–4048. [Google Scholar] [CrossRef]
- Fang, K.; Gou, X.; Chen, F.; Frank, D.; Liu, C.; Li, J.; Kazmer, M. Precipitation Variability during the Past 400 Years in the Xiaolong Mountain (Central China) Inferred from Tree Rings. Clim. Dyn. 2012, 39, 1697–1707. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Y.; Shao, X.; Yin, Z.-Y.; Zhang, J. Temperature Variability Inferred from Tree-Ring Widths in the Dabie Mountains of Subtropical Central China. Trees 2012, 26, 1887–1894. [Google Scholar] [CrossRef]
- Shi, C.; Masson-Delmotte, V.; Daux, V.; Li, Z.; Zhang, Q.-B. An Unstable Tree-Growth Response to Climate in Two 500 Year Chronologies, North Eastern Qinghai-Tibetan Plateau. Dendrochronologia 2010, 28, 225–237. [Google Scholar] [CrossRef]
- Shi, J.; Cook, E.R.; Li, J.; Lu, H. Unprecedented January–July Warming Recorded in a 178-Year Tree-Ring Width Chronology in the Dabie Mountains, Southeastern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 381–382, 92–97. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Song, H.; Ma, Y.; Cai, Q.; Wang, Y. Tree-Ring Reconstruction of Seasonal Mean Minimum Temperature at Mt. Yaoshan, China, since 1873 and Its Relevance to 20th-Century Warming. Clim. Past Discuss. 2014, 10, 859–894. [Google Scholar]
- Li, J.; Jin, L.; Zheng, Z. A 278-Year Summer Minimum Temperature Reconstruction Based on Tree-Ring Data in the Upper Reaches of Dadu River. Forests 2023, 14, 832. [Google Scholar] [CrossRef]
- Fang, K.; Gou, X.; Chen, F.; D’Arrigo, R.; Li, J. Tree-Ring Based Drought Reconstruction for the Guiqing Mountain (China): Linkages to the Indian and Pacific Oceans. Int. J. Climatol. 2010, 30, 1137–1145. [Google Scholar] [CrossRef]
- Allan, R.; Lindesay, J.; Parker, D. El Nino Southern Oscillation and Climate Variability; CSIRO Publishing: Clayton, Australia, 1996. [Google Scholar]
- Multi-Scale Dynamical Analysis (MSDA) of Sea Level Records Versus PDO, AMO, and NAO Indexes|Climate Dynamics. Available online: https://link.springer.com/article/10.1007/s00382-013-1771-3#citeas (accessed on 1 December 2024).
- Le Goff, H.; Flannigan, M.D.; Bergeron, Y.; Girardin, M.P. Historical Fire Regime Shifts Related to Climate Teleconnections in the Waswanipi Area, Central Quebec, Canada. Int. J. Wildland Fire 2007, 16, 607. [Google Scholar] [CrossRef]
- Xu, H.C. Pinus Tabulaeformis (In Chinese); China Forestry Publishing House: Beijing, China, 1990; pp. 18–23. [Google Scholar]
- Ren, P.; Rossi, S.; Gricar, J.; Liang, E.; Cufar, K. Is Precipitation a Trigger for the Onset of Xylogenesis in Juniperus Przewalskii on the North-Eastern Tibetan Plateau? Ann. Bot. 2015, 115, 629–639. [Google Scholar] [CrossRef]
- Chen, F.; Yuan, Y. May–June Maximum Temperature Reconstruction from Mean Earlywood Density in North Central China and Its Linkages to the Summer Monsoon Activities. PLoS ONE 2014, 9, e107501. [Google Scholar] [CrossRef]
- Liu, W.; Gou, X.; Li, J.; Huo, Y.; Yang, M.; Zhang, J.; Zhang, W.; Yin, D. Temperature Signals Complicate Tree-Ring Precipitation Reconstructions on the Northeastern Tibetan Plateau. Glob. Planet. Change 2021, 200, 103460. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Hack, J.J.; Shea, D.; Caron, J.M.; Rosinski, J. A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model. J. Clim. 2008, 21, 5145–5153. [Google Scholar] [CrossRef]
- Gershunov, A.; Barnett, T. Interdecadal Modulation of ENSO Teleconnections. Bull. Am. Meteorol. Soc. 1998, 79, 2715–2726. [Google Scholar] [CrossRef]
- Zhao, C.; Geng, X.; Zhang, W.; Qi, L. Atlantic Multidecadal Oscillation Modulates ENSO Atmospheric Anomaly Amplitude in the Tropical Pacific. J. Clim. 2022, 35, 3891–3903. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Li, Q.; Song, H.; Linderholm, H.W.; Leavitt, S.W.; Wang, R.; An, Z. Tree-Ring Stable Carbon Isotope-Based May–July Temperature Reconstruction over Nanwutai, China, for the Past Century and Its Record of 20th Century Warming. Quat. Sci. Rev. 2014, 93, 67–76. [Google Scholar] [CrossRef]
- Yin, H.; Sun, Y.; Li, M.-Y. Reconstructed Temperature Change in Late Summer over the Eastern Tibetan Plateau since 1867 CE and the Role of Anthropogenic Forcing. Glob. Planet. Change 2022, 208, 103715. [Google Scholar] [CrossRef]
Data Type | Site Code | Latitude | Longitude | Elevation (m a.s.l.) | Number | Slopes | Species |
---|---|---|---|---|---|---|---|
Tree-ring | TBM | 32.24 | 113.27 | 680 | 25/47 | 20–30% | Pinus massoniana |
SMM | 34.45 | 106.15 | 2210 | 20/40 | 30–40% | Pinus tabulaeformis | |
XL | 31.35 | 100.58 | 3880 | 31/46 | 30–40% | Picea balfouriana | |
Meteorological data | NY | 33.02 | 112.35 | 129.2 | |||
TS | 34.35 | 105.45 | 1141.6 | ||||
GZ | 31.37 | 100 | 3393.5 | ||||
scPDSI | 33.75° N–36.25°N | 103.75° E–106.25° E |
Statistical Item | TBM Chronology | SMM Chronology | XL Chronology |
---|---|---|---|
Standard deviation (SD) | 0.351 | 0.338 | 0.321 |
Mean sensitivity (MS) | 0.214 | 0.269 | 0.116 |
First-order autocorrelation (AR1) | 0.425 | 0.432 | 0.477 |
Common interval | 1950–2020 | 1950–2018 | 1950–2019 |
Variance of first principal component (PC1) | 30.6% | 56.4% | 40.1% |
Signal-to-noise ratio (S/N) | 13.297 | 29.23 | 20.016 |
Expressed population signal (EPS) | 0.93 | 0.967 | 0.952 |
First year of SSS > 0.85 (number of cores) | 1916 (11) | 1663 (7) | 1541 (9) |
Time span (CE) | 1916–2014 | 1663–2014 | 1541–2014 |
TBM | SMM | XL | |
---|---|---|---|
TBM | 1 | ||
SMM | 0.10 | 1 | |
XL | 0.16 | 0.30 | 1 |
Model | Calibration | Verification | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Period | r | R² | R²aj. | F | Period | r | ST | ST1 | RE | CE | |
(a) | 1954–2014 | 0.56 ** | 0.31 | 0.3 | 27.54 | ||||||
1954–1984 | 0.69 ** | 0.48 | 0.46 | 26.86 | 1985–2014 | 0.43 ** | 21 * | 18 | 0.11 | 0.11 | |
1985–2014 | 0.43 ** | 0.18 | 0.16 | 6.67 | 1954–1984 | 0.69 ** | 27 ** | 27 ** | 0.41 | 0.41 | |
(b) | 1953–2014 | 0.58 ** | 0.33 | 0.32 | 29.67 | ||||||
1953–1983 | 0.59 ** | 0.34 | 0.32 | 15.22 | 1984–2014 | 0.65 ** | 28 ** | 20 | 0.25 | −0.01 | |
1984–2014 | 0.65 ** | 0.43 | 0.41 | 21.59 | 1953–1983 | 0.59 ** | 27 ** | 26 ** | 0.08 | −0.6 | |
(c) | 1951–2014 | 0.57 ** | 0.32 | 0.31 | 29.1 | ||||||
1951–1982 | 0.58 ** | 0.34 | 0.32 | 15.44 | 1983–2014 | 0.6 ** | 27 ** | 25 ** | 0.25 | −0.01 | |
1983–2014 | 0.6 ** | 0.36 | 0.34 | 16.77 | 1951–1982 | 0.58 ** | 26 ** | 24 ** | 0.26 | 0.02 |
Sites | Number of Warm Year | Number of Cold Year | Warm Epochs | Cold Epochs |
---|---|---|---|---|
TBM | 4 (4%) | 6 (6%) | 1922–1940, 1955–1970, 1999–2014 | 1941–1954, 1971–1998 |
SMM | 22 (6.3%) | 26 (7.4%) | 1717–1798, 1805–1817, 1963–1983, 1992–2007 | 1663–1695, 1705–1715, 1823–1852, 1861–1925, 1938–1962 |
XL | 34 (7.2%) | 34 (7.2%) | 1552–1565, 1585–1598, 1612–1635, 1655–1666, 1696–1712, 1723–1734, 1735–1754, 1778–1788, 1803–1816, 1828–1839, 1852–1868, 1881–1896, 1943–1957, 1974–1988 | 1541–1551, 1566–1581, 1599–1611, 1639–1654, 1682–1692, 1765–1775, 1789–1802, 1817–1827, 1840–1851, 1869–1880, 1897–1908, 1921–1933, 1958–1973, 1989–2007 |
Climatic Factors | Station | Z Value | p |
---|---|---|---|
May–July mean maximum temperature/ May–July precipitation | Nanyang | 0.06/0.56 | 0.952/0.576 |
Tianshui | 3.16/1.14 | 0.002 **/0.256 | |
Ganzi | 2.51/1.01 | 0.012 */0.311 | |
May–July precipitation | Nanyang | 0.56 | 0.576 |
Tianshui | 1.14 | 0.256 | |
Ganzi | 1.01 | 0.311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Wang, Z.; Zhang, Y. Non-Negligible Factors Influence Tree-Ring-Based Temperature Reconstruction and Comparison over Mid-Latitude China. Atmosphere 2025, 16, 137. https://doi.org/10.3390/atmos16020137
Zheng Z, Wang Z, Zhang Y. Non-Negligible Factors Influence Tree-Ring-Based Temperature Reconstruction and Comparison over Mid-Latitude China. Atmosphere. 2025; 16(2):137. https://doi.org/10.3390/atmos16020137
Chicago/Turabian StyleZheng, Zeyu, Zhenqian Wang, and Yufang Zhang. 2025. "Non-Negligible Factors Influence Tree-Ring-Based Temperature Reconstruction and Comparison over Mid-Latitude China" Atmosphere 16, no. 2: 137. https://doi.org/10.3390/atmos16020137
APA StyleZheng, Z., Wang, Z., & Zhang, Y. (2025). Non-Negligible Factors Influence Tree-Ring-Based Temperature Reconstruction and Comparison over Mid-Latitude China. Atmosphere, 16(2), 137. https://doi.org/10.3390/atmos16020137