An Evaluation of Modeled Plume Injection Height with Satellite-Derived Observed Plume Height
Abstract
:1. Introduction
2. Methods
2.1. Data Acquisition and Processing
- The Satellite Nadir Track Sensor Observation Service provided by the Vis Analysis Systems Technologies team at the University of Alabama in Huntsville [29] was used to determine CALIPSO orbit paths and identify days when these paths intersected a smoke plume in the HMS data set.
- COLLOP Lidar Level-1B 532 nm wavelength attenuated backscatter data were acquired from the ASDC and used for data visualization and qualitative assessment of smoke plume characteristics and PM2.5 concentrations.
- The BlueSky framework smoke modeling system was used to develop smoke plume height and fire emission and heat estimates for comparison to the CALIOP and MISR satellite observations [2].
- The Community Multiscale Air Quality (CMAQ) model was used to transport and diffuse injected smoke plumes to compare with CALIOP aerosol data [34].
2.2. Identification of Fires and Corresponding MISR and CALIOP Satellite Observations
2.3. Development of Modeled Smoke Predictions
2.4. Statistics and Analysis Used in Comparing Plume Heights
3. Results
3.1. Comparison of MISR Observed Plume Heights to FEPS Plume Heights
Parameter (units) | MISR Plume Top Height Observations | FEPS Modeled Plume Top Height |
---|---|---|
Number of samples | 163 | 163 |
Minimum (m) | 284 | 109 |
Maximum (m) | 5,088 | 18,699 |
Median (m) | 1,436 | 806 |
Mean (m) | 1,699 | 1,557 |
Standard Deviation (m) | 1,124 | 2,116 |
Parameter (units) | West | Central | East | |||
---|---|---|---|---|---|---|
MISR | FEPS | MISR | FEPS | MISR | FEPS | |
Number of samples | 42 | 42 | 50 | 50 | 71 | 71 |
Minimum (m) | 452 | 231 | 1,436 | 138 | 284 | 109 |
Maximum (m) | 4,770 | 18,699 | 5,216 | 9,781 | 1,872 | 4,033 |
Median (m) | 1,984 | 1,172 | 2,745 | 1,209 | 798 | 660 |
Mean (m) | 1,960 | 1,861 | 2,824 | 2,276 | 768 | 871 |
Standard Deviation (m) | 948 | 2,923 | 856 | 2,378 | 371 | 704 |
3.2. Comparison of CALIOP Observed Plume Heights to CMAQ Modeled Plume Heights
Parameter (units) | CALIOP Plume Height Observations | CMAQ Modeled Plume Height |
---|---|---|
Number of samples | 64 | 64 |
Minimum (m) | 824 | 744 |
Maximum (m) | 3,320 | 3,626 |
Median (m) | 1,940 | 1,540 |
Mean (m) | 2,033 | 1,659 |
Standard Deviation (m) | 608 | 627 |
4. Discussion and Conclusions
Acknowledgments
References
- Westerling, A.L.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar]
- Larkin, N.K.; O’Neill, S.M.; Solomon, R.; Raffuse, S.; Strand, T.M.; Sullivan, D.C.; Krull, C.; Rorig, M.; Peterson, J.; Ferguson, S.A. The BlueSky smoke modeling framework. Int. J. Wildland Fire 2009, 18, 906–920. [Google Scholar] [CrossRef]
- O’Neill, S.M.; Larkin, N.K.; Hoadley, J.; Mills, G.; Vaughan, J.K.; Draxler, R.R.; Rolph, G.; Ruminski, M.; Ferguson, S.A. Regional Real-Time Smoke Prediction Systems. In Wildland Fires and Air Pollution. Development in Environmental Science; Bytnerowicz, A., Arbaugh, M., Andersen, C., Riebau, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 8, pp. 499–534. [Google Scholar]
- Hodzic, A.; Madronich, S.; Bohn, B.; Massie, S.; Menut, L.; Wiedinmyer, C. Wildfire particulate matter in Europe during summer 2003: Meso-scale modeling of smoke emissions, transport and radiative effects. Atmos. Chem. Phys. 2007, 7, 4743–4764. [Google Scholar]
- Wiedinmyer, C.; Quayle, B.; Geron, C.; Belote, A.; McKenzie, D.; Zhang, X.; O’Neill, S.M.; Wynne, K. Estimating emissions from fires in North America. Atmos. Environ. 2006, 40, 3419–3432. [Google Scholar]
- Reid, J.S.; Hyer, E.J.; Prins, E.M.; Westphal, D.L.; Zhang, J.; Wang, J.; Christopher, S.A.; Curtis, C.A.; Schmidt, C.C.; Eleuterio, D.P.; et al. Global monitoring and forecasting of biomass-burning smoke: description of and lessons from the Fire Locating and Modeling of Burning Emissions (FLAMBE) program. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 144–162. [Google Scholar] [CrossRef]
- Damoah, R.; Spichtinger, N.; Forster, C.; James, P.; Mattis, I.; Wandinger, U.; Beirle, S.; Wagner, T.; Stohl, A. Around the world in 17 days-hemispheric-scale transport of forest fire smoke from Russia in May 2003. Atmos. Chem. Phys. 2004, 4, 1311–1321. [Google Scholar]
- Duck, T.J.; Firanski, B.J.; Millet, D.B.; Goldstein, A.H.; Allan, J.; Holzinger, R.; Worsnop, D.R.; White, A.B.; Stohl, A.; Dickinson, C.S. Transport of forest fire emissions from Alaska and the Yukon Territory to Nova Scotia during summer 2004. J. Geophys. Res. 2007, 112, D10–S44. [Google Scholar]
- Trentmann, J.; Andreae, M.O.; Graf, H.-F.; Hobbs, P.V.; Ottmar, R.D.; Trautmann, T. Simulation of a biomass-burning plume: Comparison of model results with observations. J. Geophys. Res. 2002, 107, 4013–1. [Google Scholar]
- Freitas, S.R.; Longo, K.M.; Chatfield, R.; Latham, D.; Dias, M.A.F.S.; Andreae, M.O.; Prins, E.; Santos, J.C.; Gielow, R.; Carvalho, J.A., Jr. Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys. 2007, 7, 3385–3398. [Google Scholar]
- Wooster, M.J.; Roberts, G.; Perry, G.L.W.; Kaufman, Y.J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. 2005, 110, D24311–1. [Google Scholar]
- French, N.H.F.; Goovaerts, P.; Kasischke, E.S. Uncertainty in estimating carbon emissions from boreal forest fires. J. Geophys. Res. 2004, 109, D14–S08. [Google Scholar]
- Breyfogle, S.; Ferguson, S.A. User Assessment of Smoke-Dispersion Models for Wildland Biomass Burning; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1996. [Google Scholar]
- Turquety, S.; Logan, J.A.; Jacob, D.J.; Hudman, R.C.; Leung, F.Y.; Heald, C.L.; Yantosca, R.M.; Wu, S.; Emmons, L.K.; Edwards, D.P.; et al. Inventory of boreal fire emissions for North America in 2004: Importance of peat burning and pyroconvective injection. J. Geophys. Res. 2007, 112, D12–S03. [Google Scholar]
- Duncan, B.N.; Strahan, S.E.; Yoshida, Y.B.; Steenrod, S.D.; Livesey, N. Model study of the cross-tropopause transport of biomass burning pollution. Atmos. Chem. Phys. 2007, 7, 3713–3736. [Google Scholar] [CrossRef]
- Guan, H.; Chatfield, R.B.; Freitas, S.R.; Bergstrom, R.W.; Longo, K.M. Modeling the effect of plume-rise on the transport of carbon monoxide over Africa with NCAR CAM. Atmos. Chem. Phys. 2008, 8, 6801–6812. [Google Scholar] [CrossRef]
- Hyer, E.J.; Chew, B.N. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia. Atmos. Environ. 2010, 44, 1422–1427. [Google Scholar] [CrossRef]
- Kahn, R.A.; Li, W.-H.; Moroney, C.; Diner, D.J.; Martonchik, J.V.; Fishbein, E. Aerosol source plume physical characteristics from space-based multiangle imaging. J. Geophys. Res. 2007, 112, D11205–1. [Google Scholar]
- Labonne, M.; Bréon, F.M.; Chevallier, F. Injection height of biomass burning aerosols as seen from a spaceborne lidar. Geophys. Res. Lett. 2007, 34, L11806–1. [Google Scholar]
- val Martin, M.; Logan, J.A.; Kahn, R.A.; Leung, F.Y.; Nelson, D.L.; Diner, D.J. Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations. Atmos. Chem. Phys. 2010, 10, 1491–1510. [Google Scholar]
- Guan, H.; Esswein, R.; Lopez, J.; Bergstrom, R.; Warnock, A.; Follette-Cook, M.; Fromm, M.; Iraci, L.T. A multi-decadal history of biomass burning plume heights identified using aerosol index measurements. Atmos. Chem. Phys. 2010, 10, 6461–6469. [Google Scholar]
- Sessions, W.R.; Fuelberg, H.E.; Kahn, R.A.; Winker, D.M. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS. Atmos. Chem. Phys. 2011, 11, 5719–5744. [Google Scholar] [Green Version]
- Kahn, R.A.; Chen, Y.; Nelson, D.L.; Leung, F.-Y.; Li, Q.; Diner, D.J.; Logan, J.A. Wildfire smoke injection heights: Two perspectives from space. Geophys. Res. Lett. 2008, 35, L04809–1. [Google Scholar]
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, L19803–1. [Google Scholar]
- Hazard Mapping System Fire and Smoke Product; National Oceanic and Atmospheric Administration: Washington, DC, USA. Available online: http://www.osdpd.noaa.gov/ml/land/hms.html (accessed on 15 November 2011).
- McNamara, D.P.; Stephens, G.; Ruminski, M.; Kasheta, T. The Hazard Mapping System (HMS)—NOAA’s Multi-Sensor Fire and Smoke Detection Program Using Environmental Satellites. In Proceedings of the 13th Conference on Satellite Meteorology and Oceanography, Norfolk, VA, USA, 22 September 2004.
- USDA Forest Service AirFire Team; Sonoma Technology Inc. BlueSky Gateway: SMARTFIRE. Available online: http://www.getbluesky.org/smartfire (accessed on 15 December 2011).
- Raffuse, S.M.; Sullivan, D.C.; Chinkin, L.R.; Pryden, D.A.; Wheeler, N.J.M.; Larkin, N.K.; Solomon, R.; Soja, A. Integration and Reconciliation of Satellite-Detected and Incident Command-Reported Wildfire Information in the BlueSky Smoke Modeling Framework. In Proceedings of the 6th Annual CMAS Conference, Chapel Hill, NC, USA, 1-3 October 2007.
- National Aeronautics and Space Administration; University of Alabama in Huntsville SMART and Sensor Webs. Available online: http://smartdev.itsc.uah.edu (accessed on 15 December 2011).
- CALIPSO Quality Statements; National Oceanic and Atmospheric Administration: Washington, DC, USA. Available online: http://eosweb.larc.nasa.gov/PRODOCS/calipso/Quality_Summaries (accessed on 15 December 2011).
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- MISR Plume Height Project; National Oceanic and Atmospheric Administration: Washington, D.C., USA. Available online: http://www.misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes/productDescription/ (accessed on 15 December 2011).
- Nelson, D.L.; Chen, Y.; Kahn, R.A.; Diner, D.J.; Mazzoni, D. Example applications of the MISR INteractive eXplorer (MINX) software tool to wildfire smoke plume analyses. Proc. SPIE 2008, 7089. [Google Scholar] [CrossRef]
- National Exposure Research Laboratory. In Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 1999.
- Hoelzemann, J.J.; Schultz, M.G.; Brasseur, G.P.; Granier, C.; Simon, M. Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data. J. Geophys. Res. 2004, 109, 4473–4475. [Google Scholar]
- BlueSky Framework; version 3.0.0; U.S. Forest Service AirFire Team and Sonoma Technology, Inc: Seattle, WA, USA, 2007.
- Sullivan, D.C.; Raffuse, S.M.; Pryden, D.A.; Craig, K.J.; Reid, S.B.; Wheeler, N.J.M.; Chinkin, L.R.; Larkin, N.K.; Solomon, R.; Strand, T. Development and Applications of Systems for Modeling Emissions and Smoke from Fires: The BlueSky Smoke Modeling Framework and SMARTFIRE; Presented at the 17th International Emissions Inventory Conference: Portland, OR, USA, 5 June 2008. [Google Scholar]
- The Fuel Characteristic Classificaion System (FCCS); Fire and Environmental Research Applications Team: Seattle, WA, USA, 2007; version 1.
- Consume; USDA Forest Service Fire and Environmental Research Applications Team: Seattle, WA, USA, 2005; version 3.0.
- Fire Emission Production Simulator (FEPS); Fire and Environmental Research Applications Team: Seattle, WA, USA, 2005; version 1.1.
- SMOKE; Community Modeling and Analysis System at the University of North Carolina Chapel Hill: Chapel Hill, NC, USA, 2006; version 2.3.
- CMAQ; Community Modeling and Analysis System at the University of North Carolina Chapel Hill: Chapel Hill, NC, USA, 2006; version 4.5.1.
- Ottmar, R.D.; Sandberg, D.V.; Prichard, S.J.; Riccardi, C.L. Fuel Characteristic Classification System; Presented at the 2nd International Wildland Fire Ecology and Fire Management Congress: Orlando, FL, USA, 30 September 2004. [Google Scholar]
- McKenzie, D.; Raymond, C.L.; Kellogg, L.K.B.; Norheim, R.A.; Andreu, A.G.; Bayard, A.C.; Kopper, K.E. Mapping fuels at multiple scales: Landscape application of the fuel characteristic classification system. Can. J. Forest Res. 2007, 37, 2421–2437. [Google Scholar] [CrossRef]
- Air Sciences Inc. Integrated Assessment Update and 2018 Emissions Inventory for Prescribed Fire, Wildfire, and Agricultural Burning; Air Sciences, Inc.: Denver, CO, USA, 2005.
- Briggs, G.A. Plume Rise Equations. In Lectures on Air Pollution and Environmental Impact Analysis; Haugen, D.A., Ed.; AMS: Boston, MA, USA, 1975; pp. 59–111. [Google Scholar]
- Pasquill, F. The estimation of the dispersion of windborne material. Meteorol. Mag. 1961, 90, 33–49. [Google Scholar]
- Coats, C.J. High Performance Algorithms in the Sparse Matrix Operator Kernel Emissions Modeling System. In Proceedings of the 9th Joint Conference on Applications of Air Pollution Meteorology of the American Meteorological Society and the Air and Waste Management Association, Atlanta, GA, USA, 28 January–3 February 1996.
- Houyoux, M.R.; Adelman, Z. Quality Assurance Enhancements to the SMOKE Modeling System. In Proceedings of the U.S. Environmental Protection Agency’s International Emission Inventory Conference: One Atmosphere, One Inventory, Many Challenges, Denver, CO, USA, 1–3 May 2001.
- Houyoux, M.; Vukovich, J.; Brandmeyer, J. Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) User Manual; MCNC-North Carolina Supercomputing Center: Research Triangle Park, NC, USA, 2000. [Google Scholar]
- Houyoux, M.R.; Vukovich, J.M. Updates to the Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System and Integration with Models-3. In Proceedings of the Air & Waste Management Association’s The Emission Inventory: Regional Strategies for the Future, Raleigh, NC, USA, 26–28 October 1999.
- Sessions, W.R.; Fuelberg, H.E.; Kahn, R.A.; Winker, D.M. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS. Atmos. Chem. Phys. 2011, 11, 5719–5744. [Google Scholar] [CrossRef] [Green Version]
- Stephens, S.L. The application of service oriented software architectures in the fuels treatment community. Int. J. Wildland Fire 2005, 14, 213–222. [Google Scholar] [CrossRef]
- Liu, Y.; Achtemeier, G.L.; Goodrick, S.L.; Jackson, W.A. Important parameters for smoke plume rise simulation with Daysmoke. Atmos. Pollut. Res. 2010, 1, 250–259. [Google Scholar]
- Freitas, S.R.; Longo, K.M.; Dias, S.; Chatfield, R.; Artaxo, P.; Andreae, M.O.; Grell, G.; Rodrigues, L.F.; Fazenda, A.; Panetta, J. The coupled aerosol and tracer transport model to the Brazilian developments on the regional atmospheric modeling system (CATT-BRAMS) Part 1: Model description and evaluation. Atmos. Chem. Phys. 2007, 7, 8525–8569. [Google Scholar]
- Mazzoni, D.; Logan, J.A.; Diner, D.; Kahn, R.; Tong, L.; Li, Q. A data-mining approach to associating MISR smoke plume heights with MODIS fire measurements. Remote Sens. Environ. 2007, 107, 138–148. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Raffuse, S.M.; Craig, K.J.; Larkin, N.K.; Strand, T.T.; Sullivan, D.C.; Wheeler, N.J.M.; Solomon, R. An Evaluation of Modeled Plume Injection Height with Satellite-Derived Observed Plume Height. Atmosphere 2012, 3, 103-123. https://doi.org/10.3390/atmos3010103
Raffuse SM, Craig KJ, Larkin NK, Strand TT, Sullivan DC, Wheeler NJM, Solomon R. An Evaluation of Modeled Plume Injection Height with Satellite-Derived Observed Plume Height. Atmosphere. 2012; 3(1):103-123. https://doi.org/10.3390/atmos3010103
Chicago/Turabian StyleRaffuse, Sean M., Kenneth J. Craig, Narasimhan K. Larkin, Tara T. Strand, Dana Coe Sullivan, Neil J. M. Wheeler, and Robert Solomon. 2012. "An Evaluation of Modeled Plume Injection Height with Satellite-Derived Observed Plume Height" Atmosphere 3, no. 1: 103-123. https://doi.org/10.3390/atmos3010103
APA StyleRaffuse, S. M., Craig, K. J., Larkin, N. K., Strand, T. T., Sullivan, D. C., Wheeler, N. J. M., & Solomon, R. (2012). An Evaluation of Modeled Plume Injection Height with Satellite-Derived Observed Plume Height. Atmosphere, 3(1), 103-123. https://doi.org/10.3390/atmos3010103